summaryrefslogtreecommitdiff
path: root/windy/point_forecast.py
blob: 308d432044518460d05708e228c1d9f80ff53057 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
Module provides tools to deal with Windy's point forecast API.
"""

from dataclasses import dataclass
from datetime import datetime
from enum import Enum

import numpy as np


def _json(value):
	try:
		return value.json()
	except AttributeError:
		return value


def _convert_notation(unit):
	return unit.replace("-1", "^-1")


class _StrEnum(Enum):
	def __init__(self, value):
		self._index = len(self.__class__.__members__)

	def __lt__(self, other):
		if self.__class__ is other.__class__:
			return self._index < other._index
		return NotImplemented

	def __le__(self, other):
		if self.__class__ is other.__class__:
			return self._index <= other._index
		return NotImplemented

	def __gt__(self, other):
		if self.__class__ is other.__class__:
			return self._index > other._index
		return NotImplemented

	def __ge__(self, other):
		if self.__class__ is other.__class__:
			return self._index >= other._index
		return NotImplemented

	def __str__(self):
		return self.value

	def json(self):
		return self.value


class Model(_StrEnum):
	"""
	Numerical models available for use with point forecast API.
	"""
	AROME = "arome"
	GEOS5 = "geos5"
	GFS = "gfs"
	GFSWAVE = "gfsWave"
	ICONEU = "iconEu"
	NAMALASKA = "namAlaska"
	NAMCONUS = "namConus"
	NAMHAWAII = "namHawaii"


class Level(_StrEnum):
	"""
	Selectable levels for some of the input parameters that support them.
	"""
	SURFACE = "surface"
	H1000 = "1000h"
	H950 = "950h"
	H925 = "925h"
	H900 = "900h"
	H850 = "850h"
	H800 = "800h"
	H700 = "700h"
	H600 = "600h"
	H500 = "500h"
	H400 = "400h"
	H300 = "300h"
	H200 = "200h"
	H150 = "150h"

	def pressure(self):
		if self is Level.SURFACE:
			raise ValueError
		return float(self.value[:-1])


@dataclass
class Request:
	"""
	Wraps raw JSON request expected by Windy's API.
	"""
	key: str
	lat: float
	lon: float
	model: Model
	parameters: list = None
	levels: list = None

	def json(self):
		body = {
			'key': self.key,
			'lat': self.lat,
			'lon': self.lon,
			'model': _json(self.model),
			'parameters': self.parameters or [],
		}
		if self.levels:
			body['levels'] = [_json(x) for x in self.levels]
		return body


class Prediction:
	"""
	Predicted values for each of the requested parameters along with their associated time point.
	"""
	def __init__(self, response, index=0):
		self._response = response
		self._index = index

	@property
	def timestamp(self) -> datetime:
		return self._response.timestamps[self._index]

	@property
	def parameters(self) -> tuple:
		return self._response.parameters

	@property
	def levels(self) -> tuple:
		return self._response.levels

	def __iter__(self):
		return iter(self.parameters)

	def __getitem__(self, key):
		return self._response.values[key][self._index]


class Response:
	"""
	Wraps raw JSON response from the Windy's API to allow for easier access, converts all values to pint's
	Quantities, and converts all timestamps into datetime objects.

	Can be used in a for-loop to access all samples via Prediction:

		>>> for prediction in response:
		>>>     print(prediction.timestamp, prediction['temp'])

	Otherwise, timestamps list and samples dictionary are available for direct access.
	"""
	_INTERNAL_FIELDS = ('ts', 'units', 'warning')

	def __init__(self, registry, raw):
		self.timestamps = [datetime.fromtimestamp(x // 1000) for x in raw['ts']]
		count = len(self.timestamps)
		split = [tuple(x.split("-")) for x in raw if x not in self._INTERNAL_FIELDS]
		self.parameters = tuple({x for x, _ in split})
		self.levels = tuple(sorted({Level(x) for _, x in split}))
		if 'pressure' in self.parameters:
			for level in self.levels:
				if level is Level.SURFACE:
					continue
				raw[f'pressure-{level}'] = [level.pressure() for _ in range(len(self.timestamps))]
		units = {x: registry(_convert_notation(raw['units'][f'{x}-surface'])) for x in self.parameters}  # Don't guess surface
		self.values = {p: [[raw[f'{p}-{l}'][i] for l in self.levels] * units[p] for i in range(count)] for p in self.parameters}

	def __len__(self):
		return len(self.timestamps)

	def predictions(self) -> Prediction:
		"""
		Yields Prediction for each time point available in this Response.
		"""
		for index in range(len(self.timestamps)):
			yield Prediction(self, index)

	def __iter__(self):
		return self.predictions()


@dataclass
class PointForecast:
	"""
	Represents the point forecast endpoint bound to *path*. Once created it can be called with Request object or
	with the same arguments that would be used to initialize the Request. The request is made using the passed
	*ctx*, which is usually a Windy instance.
	"""
	path: str

	def __call__(self, ctx, *args, **kwargs):
		try:
			body = args[0].json()
		except (IndexError, AttributeError):
			body = Request(*args, **kwargs).json()
		response = ctx.session.post(ctx.api + self.path, json=body)
		response.raise_for_status()
		return Response(ctx.registry, response.json())