1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
|
/********************************************************************
* *
* THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
* *
* THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2001 *
* by the Xiph.Org Foundation http://www.xiph.org/ *
* *
********************************************************************
function: train a VQ codebook
********************************************************************/
/* This code is *not* part of libvorbis. It is used to generate
trained codebooks offline and then spit the results into a
pregenerated codebook that is compiled into libvorbis. It is an
expensive (but good) algorithm. Run it on big iron. */
/* There are so many optimizations to explore in *both* stages that
considering the undertaking is almost withering. For now, we brute
force it all */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "vqgen.h"
#include "bookutil.h"
/* Codebook generation happens in two steps:
1) Train the codebook with data collected from the encoder: We use
one of a few error metrics (which represent the distance between a
given data point and a candidate point in the training set) to
divide the training set up into cells representing roughly equal
probability of occurring.
2) Generate the codebook and auxiliary data from the trained data set
*/
/* Codebook training ****************************************************
*
* The basic idea here is that a VQ codebook is like an m-dimensional
* foam with n bubbles. The bubbles compete for space/volume and are
* 'pressurized' [biased] according to some metric. The basic alg
* iterates through allowing the bubbles to compete for space until
* they converge (if the damping is dome properly) on a steady-state
* solution. Individual input points, collected from libvorbis, are
* used to train the algorithm monte-carlo style. */
/* internal helpers *****************************************************/
#define vN(data,i) (data+v->elements*i)
/* default metric; squared 'distance' from desired value. */
float _dist(vqgen *v,float *a, float *b){
int i;
int el=v->elements;
float acc=0.f;
for(i=0;i<el;i++){
float val=(a[i]-b[i]);
acc+=val*val;
}
return sqrt(acc);
}
float *_weight_null(vqgen *v,float *a){
return a;
}
/* *must* be beefed up. */
void _vqgen_seed(vqgen *v){
long i;
for(i=0;i<v->entries;i++)
memcpy(_now(v,i),_point(v,i),sizeof(float)*v->elements);
v->seeded=1;
}
int directdsort(const void *a, const void *b){
float av=*((float *)a);
float bv=*((float *)b);
return (av<bv)-(av>bv);
}
void vqgen_cellmetric(vqgen *v){
int j,k;
float min=-1.f,max=-1.f,mean=0.f,acc=0.f;
long dup=0,unused=0;
#ifdef NOISY
int i;
char buff[80];
float spacings[v->entries];
int count=0;
FILE *cells;
sprintf(buff,"cellspace%d.m",v->it);
cells=fopen(buff,"w");
#endif
/* minimum, maximum, cell spacing */
for(j=0;j<v->entries;j++){
float localmin=-1.;
for(k=0;k<v->entries;k++){
if(j!=k){
float this=_dist(v,_now(v,j),_now(v,k));
if(this>0){
if(v->assigned[k] && (localmin==-1 || this<localmin))
localmin=this;
}else{
if(k<j){
dup++;
break;
}
}
}
}
if(k<v->entries)continue;
if(v->assigned[j]==0){
unused++;
continue;
}
localmin=v->max[j]+localmin/2; /* this gives us rough diameter */
if(min==-1 || localmin<min)min=localmin;
if(max==-1 || localmin>max)max=localmin;
mean+=localmin;
acc++;
#ifdef NOISY
spacings[count++]=localmin;
#endif
}
fprintf(stderr,"cell diameter: %.03g::%.03g::%.03g (%ld unused/%ld dup)\n",
min,mean/acc,max,unused,dup);
#ifdef NOISY
qsort(spacings,count,sizeof(float),directdsort);
for(i=0;i<count;i++)
fprintf(cells,"%g\n",spacings[i]);
fclose(cells);
#endif
}
/* External calls *******************************************************/
/* We have two forms of quantization; in the first, each vector
element in the codebook entry is orthogonal. Residues would use this
quantization for example.
In the second, we have a sequence of monotonically increasing
values that we wish to quantize as deltas (to save space). We
still need to quantize so that absolute values are accurate. For
example, LSP quantizes all absolute values, but the book encodes
distance between values because each successive value is larger
than the preceeding value. Thus the desired quantibits apply to
the encoded (delta) values, not abs positions. This requires minor
additional encode-side trickery. */
void vqgen_quantize(vqgen *v,quant_meta *q){
float maxdel;
float mindel;
float delta;
float maxquant=((1<<q->quant)-1);
int j,k;
mindel=maxdel=_now(v,0)[0];
for(j=0;j<v->entries;j++){
float last=0.f;
for(k=0;k<v->elements;k++){
if(mindel>_now(v,j)[k]-last)mindel=_now(v,j)[k]-last;
if(maxdel<_now(v,j)[k]-last)maxdel=_now(v,j)[k]-last;
if(q->sequencep)last=_now(v,j)[k];
}
}
/* first find the basic delta amount from the maximum span to be
encoded. Loosen the delta slightly to allow for additional error
during sequence quantization */
delta=(maxdel-mindel)/((1<<q->quant)-1.5f);
q->min=_float32_pack(mindel);
q->delta=_float32_pack(delta);
mindel=_float32_unpack(q->min);
delta=_float32_unpack(q->delta);
for(j=0;j<v->entries;j++){
float last=0;
for(k=0;k<v->elements;k++){
float val=_now(v,j)[k];
float now=rint((val-last-mindel)/delta);
_now(v,j)[k]=now;
if(now<0){
/* be paranoid; this should be impossible */
fprintf(stderr,"fault; quantized value<0\n");
exit(1);
}
if(now>maxquant){
/* be paranoid; this should be impossible */
fprintf(stderr,"fault; quantized value>max\n");
exit(1);
}
if(q->sequencep)last=(now*delta)+mindel+last;
}
}
}
/* much easier :-). Unlike in the codebook, we don't un-log log
scales; we just make sure they're properly offset. */
void vqgen_unquantize(vqgen *v,quant_meta *q){
long j,k;
float mindel=_float32_unpack(q->min);
float delta=_float32_unpack(q->delta);
for(j=0;j<v->entries;j++){
float last=0.f;
for(k=0;k<v->elements;k++){
float now=_now(v,j)[k];
now=fabs(now)*delta+last+mindel;
if(q->sequencep)last=now;
_now(v,j)[k]=now;
}
}
}
void vqgen_init(vqgen *v,int elements,int aux,int entries,float mindist,
float (*metric)(vqgen *,float *, float *),
float *(*weight)(vqgen *,float *),int centroid){
memset(v,0,sizeof(vqgen));
v->centroid=centroid;
v->elements=elements;
v->aux=aux;
v->mindist=mindist;
v->allocated=32768;
v->pointlist=_ogg_malloc(v->allocated*(v->elements+v->aux)*sizeof(float));
v->entries=entries;
v->entrylist=_ogg_malloc(v->entries*v->elements*sizeof(float));
v->assigned=_ogg_malloc(v->entries*sizeof(long));
v->bias=_ogg_calloc(v->entries,sizeof(float));
v->max=_ogg_calloc(v->entries,sizeof(float));
if(metric)
v->metric_func=metric;
else
v->metric_func=_dist;
if(weight)
v->weight_func=weight;
else
v->weight_func=_weight_null;
v->asciipoints=tmpfile();
}
void vqgen_addpoint(vqgen *v, float *p,float *a){
int k;
for(k=0;k<v->elements;k++)
fprintf(v->asciipoints,"%.12g\n",p[k]);
for(k=0;k<v->aux;k++)
fprintf(v->asciipoints,"%.12g\n",a[k]);
if(v->points>=v->allocated){
v->allocated*=2;
v->pointlist=_ogg_realloc(v->pointlist,v->allocated*(v->elements+v->aux)*
sizeof(float));
}
memcpy(_point(v,v->points),p,sizeof(float)*v->elements);
if(v->aux)memcpy(_point(v,v->points)+v->elements,a,sizeof(float)*v->aux);
/* quantize to the density mesh if it's selected */
if(v->mindist>0.f){
/* quantize to the mesh */
for(k=0;k<v->elements+v->aux;k++)
_point(v,v->points)[k]=
rint(_point(v,v->points)[k]/v->mindist)*v->mindist;
}
v->points++;
if(!(v->points&0xff))spinnit("loading... ",v->points);
}
/* yes, not threadsafe. These utils aren't */
static int sortit=0;
static int sortsize=0;
static int meshcomp(const void *a,const void *b){
if(((sortit++)&0xfff)==0)spinnit("sorting mesh...",sortit);
return(memcmp(a,b,sortsize));
}
void vqgen_sortmesh(vqgen *v){
sortit=0;
if(v->mindist>0.f){
long i,march=1;
/* sort to make uniqueness detection trivial */
sortsize=(v->elements+v->aux)*sizeof(float);
qsort(v->pointlist,v->points,sortsize,meshcomp);
/* now march through and eliminate dupes */
for(i=1;i<v->points;i++){
if(memcmp(_point(v,i),_point(v,i-1),sortsize)){
/* a new, unique entry. march it down */
if(i>march)memcpy(_point(v,march),_point(v,i),sortsize);
march++;
}
spinnit("eliminating density... ",v->points-i);
}
/* we're done */
fprintf(stderr,"\r%ld training points remining out of %ld"
" after density mesh (%ld%%)\n",march,v->points,march*100/v->points);
v->points=march;
}
v->sorted=1;
}
float vqgen_iterate(vqgen *v,int biasp){
long i,j,k;
float fdesired;
long desired;
long desired2;
float asserror=0.f;
float meterror=0.f;
float *new;
float *new2;
long *nearcount;
float *nearbias;
#ifdef NOISY
char buff[80];
FILE *assig;
FILE *bias;
FILE *cells;
sprintf(buff,"cells%d.m",v->it);
cells=fopen(buff,"w");
sprintf(buff,"assig%d.m",v->it);
assig=fopen(buff,"w");
sprintf(buff,"bias%d.m",v->it);
bias=fopen(buff,"w");
#endif
if(v->entries<2){
fprintf(stderr,"generation requires at least two entries\n");
exit(1);
}
if(!v->sorted)vqgen_sortmesh(v);
if(!v->seeded)_vqgen_seed(v);
fdesired=(float)v->points/v->entries;
desired=fdesired;
desired2=desired*2;
new=_ogg_malloc(sizeof(float)*v->entries*v->elements);
new2=_ogg_malloc(sizeof(float)*v->entries*v->elements);
nearcount=_ogg_malloc(v->entries*sizeof(long));
nearbias=_ogg_malloc(v->entries*desired2*sizeof(float));
/* fill in nearest points for entry biasing */
/*memset(v->bias,0,sizeof(float)*v->entries);*/
memset(nearcount,0,sizeof(long)*v->entries);
memset(v->assigned,0,sizeof(long)*v->entries);
if(biasp){
for(i=0;i<v->points;i++){
float *ppt=v->weight_func(v,_point(v,i));
float firstmetric=v->metric_func(v,_now(v,0),ppt)+v->bias[0];
float secondmetric=v->metric_func(v,_now(v,1),ppt)+v->bias[1];
long firstentry=0;
long secondentry=1;
if(!(i&0xff))spinnit("biasing... ",v->points+v->points+v->entries-i);
if(firstmetric>secondmetric){
float temp=firstmetric;
firstmetric=secondmetric;
secondmetric=temp;
firstentry=1;
secondentry=0;
}
for(j=2;j<v->entries;j++){
float thismetric=v->metric_func(v,_now(v,j),ppt)+v->bias[j];
if(thismetric<secondmetric){
if(thismetric<firstmetric){
secondmetric=firstmetric;
secondentry=firstentry;
firstmetric=thismetric;
firstentry=j;
}else{
secondmetric=thismetric;
secondentry=j;
}
}
}
j=firstentry;
for(j=0;j<v->entries;j++){
float thismetric,localmetric;
float *nearbiasptr=nearbias+desired2*j;
long k=nearcount[j];
localmetric=v->metric_func(v,_now(v,j),ppt);
/* 'thismetric' is to be the bias value necessary in the current
arrangement for entry j to capture point i */
if(firstentry==j){
/* use the secondary entry as the threshhold */
thismetric=secondmetric-localmetric;
}else{
/* use the primary entry as the threshhold */
thismetric=firstmetric-localmetric;
}
/* support the idea of 'minimum distance'... if we want the
cells in a codebook to be roughly some minimum size (as with
the low resolution residue books) */
/* a cute two-stage delayed sorting hack */
if(k<desired){
nearbiasptr[k]=thismetric;
k++;
if(k==desired){
spinnit("biasing... ",v->points+v->points+v->entries-i);
qsort(nearbiasptr,desired,sizeof(float),directdsort);
}
}else if(thismetric>nearbiasptr[desired-1]){
nearbiasptr[k]=thismetric;
k++;
if(k==desired2){
spinnit("biasing... ",v->points+v->points+v->entries-i);
qsort(nearbiasptr,desired2,sizeof(float),directdsort);
k=desired;
}
}
nearcount[j]=k;
}
}
/* inflate/deflate */
for(i=0;i<v->entries;i++){
float *nearbiasptr=nearbias+desired2*i;
spinnit("biasing... ",v->points+v->entries-i);
/* due to the delayed sorting, we likely need to finish it off....*/
if(nearcount[i]>desired)
qsort(nearbiasptr,nearcount[i],sizeof(float),directdsort);
v->bias[i]=nearbiasptr[desired-1];
}
}else{
memset(v->bias,0,v->entries*sizeof(float));
}
/* Now assign with new bias and find new midpoints */
for(i=0;i<v->points;i++){
float *ppt=v->weight_func(v,_point(v,i));
float firstmetric=v->metric_func(v,_now(v,0),ppt)+v->bias[0];
long firstentry=0;
if(!(i&0xff))spinnit("centering... ",v->points-i);
for(j=0;j<v->entries;j++){
float thismetric=v->metric_func(v,_now(v,j),ppt)+v->bias[j];
if(thismetric<firstmetric){
firstmetric=thismetric;
firstentry=j;
}
}
j=firstentry;
#ifdef NOISY
fprintf(cells,"%g %g\n%g %g\n\n",
_now(v,j)[0],_now(v,j)[1],
ppt[0],ppt[1]);
#endif
firstmetric-=v->bias[j];
meterror+=firstmetric;
if(v->centroid==0){
/* set up midpoints for next iter */
if(v->assigned[j]++){
for(k=0;k<v->elements;k++)
vN(new,j)[k]+=ppt[k];
if(firstmetric>v->max[j])v->max[j]=firstmetric;
}else{
for(k=0;k<v->elements;k++)
vN(new,j)[k]=ppt[k];
v->max[j]=firstmetric;
}
}else{
/* centroid */
if(v->assigned[j]++){
for(k=0;k<v->elements;k++){
if(vN(new,j)[k]>ppt[k])vN(new,j)[k]=ppt[k];
if(vN(new2,j)[k]<ppt[k])vN(new2,j)[k]=ppt[k];
}
if(firstmetric>v->max[firstentry])v->max[j]=firstmetric;
}else{
for(k=0;k<v->elements;k++){
vN(new,j)[k]=ppt[k];
vN(new2,j)[k]=ppt[k];
}
v->max[firstentry]=firstmetric;
}
}
}
/* assign midpoints */
for(j=0;j<v->entries;j++){
#ifdef NOISY
fprintf(assig,"%ld\n",v->assigned[j]);
fprintf(bias,"%g\n",v->bias[j]);
#endif
asserror+=fabs(v->assigned[j]-fdesired);
if(v->assigned[j]){
if(v->centroid==0){
for(k=0;k<v->elements;k++)
_now(v,j)[k]=vN(new,j)[k]/v->assigned[j];
}else{
for(k=0;k<v->elements;k++)
_now(v,j)[k]=(vN(new,j)[k]+vN(new2,j)[k])/2.f;
}
}
}
asserror/=(v->entries*fdesired);
fprintf(stderr,"Pass #%d... ",v->it);
fprintf(stderr,": dist %g(%g) metric error=%g \n",
asserror,fdesired,meterror/v->points);
v->it++;
free(new);
free(nearcount);
free(nearbias);
#ifdef NOISY
fclose(assig);
fclose(bias);
fclose(cells);
#endif
return(asserror);
}
|