summaryrefslogtreecommitdiffhomepage
path: root/Opcode/OPC_TriBoxOverlap.h
blob: 662a12720e4f5156b2f89352f84fb84691b7ba0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

//! This macro quickly finds the min & max values among 3 variables
#define FINDMINMAX(x0, x1, x2, min, max)	\
	min = max = x0;							\
	if(x1<min) min=x1;						\
	if(x1>max) max=x1;						\
	if(x2<min) min=x2;						\
	if(x2>max) max=x2;

//! TO BE DOCUMENTED
inline_ BOOL planeBoxOverlap(const IcePoint& normal, const float d, const IcePoint& maxbox)
{
	IcePoint vmin, vmax;
	for(udword q=0;q<=2;q++)
	{
		if(normal[q]>0.0f)	{ vmin[q]=-maxbox[q]; vmax[q]=maxbox[q]; }
		else				{ vmin[q]=maxbox[q]; vmax[q]=-maxbox[q]; }
	}
	if((normal|vmin)+d>0.0f) return FALSE;
	if((normal|vmax)+d>=0.0f) return TRUE;

	return FALSE;
}

//! TO BE DOCUMENTED
#define AXISTEST_X01(a, b, fa, fb)							\
	min = a*v0.y - b*v0.z;									\
	max = a*v2.y - b*v2.z;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.y + fb * extents.z;					\
	if(min>rad || max<-rad) return FALSE;

//! TO BE DOCUMENTED
#define AXISTEST_X2(a, b, fa, fb)							\
	min = a*v0.y - b*v0.z;									\
	max = a*v1.y - b*v1.z;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.y + fb * extents.z;					\
	if(min>rad || max<-rad) return FALSE;

//! TO BE DOCUMENTED
#define AXISTEST_Y02(a, b, fa, fb)							\
	min = b*v0.z - a*v0.x;									\
	max = b*v2.z - a*v2.x;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.x + fb * extents.z;					\
	if(min>rad || max<-rad) return FALSE;

//! TO BE DOCUMENTED
#define AXISTEST_Y1(a, b, fa, fb)							\
	min = b*v0.z - a*v0.x;									\
	max = b*v1.z - a*v1.x;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.x + fb * extents.z;					\
	if(min>rad || max<-rad) return FALSE;

//! TO BE DOCUMENTED
#define AXISTEST_Z12(a, b, fa, fb)							\
	min = a*v1.x - b*v1.y;									\
	max = a*v2.x - b*v2.y;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.x + fb * extents.y;					\
	if(min>rad || max<-rad) return FALSE;

//! TO BE DOCUMENTED
#define AXISTEST_Z0(a, b, fa, fb)							\
	min = a*v0.x - b*v0.y;									\
	max = a*v1.x - b*v1.y;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.x + fb * extents.y;					\
	if(min>rad || max<-rad) return FALSE;

// compute triangle edges
// - edges lazy evaluated to take advantage of early exits
// - fabs precomputed (half less work, possible since extents are always >0)
// - customized macros to take advantage of the null component
// - axis vector discarded, possibly saves useless movs
#define IMPLEMENT_CLASS3_TESTS						\
	float rad;										\
	float min, max;									\
													\
	const float fey0 = fabsf(e0.y);					\
	const float fez0 = fabsf(e0.z);					\
	AXISTEST_X01(e0.z, e0.y, fez0, fey0);			\
	const float fex0 = fabsf(e0.x);					\
	AXISTEST_Y02(e0.z, e0.x, fez0, fex0);			\
	AXISTEST_Z12(e0.y, e0.x, fey0, fex0);			\
													\
	const float fey1 = fabsf(e1.y);					\
	const float fez1 = fabsf(e1.z);					\
	AXISTEST_X01(e1.z, e1.y, fez1, fey1);			\
	const float fex1 = fabsf(e1.x);					\
	AXISTEST_Y02(e1.z, e1.x, fez1, fex1);			\
	AXISTEST_Z0(e1.y, e1.x, fey1, fex1);			\
													\
	const IcePoint e2 = mLeafVerts[0] - mLeafVerts[2];	\
	const float fey2 = fabsf(e2.y);					\
	const float fez2 = fabsf(e2.z);					\
	AXISTEST_X2(e2.z, e2.y, fez2, fey2);			\
	const float fex2 = fabsf(e2.x);					\
	AXISTEST_Y1(e2.z, e2.x, fez2, fex2);			\
	AXISTEST_Z12(e2.y, e2.x, fey2, fex2);

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
 *	Triangle-Box overlap test using the separating axis theorem.
 *	This is the code from Tomas Möller, a bit optimized:
 *	- with some more lazy evaluation (faster path on PC)
 *	- with a tiny bit of assembly
 *	- with "SAT-lite" applied if needed
 *	- and perhaps with some more minor modifs...
 *
 *	\param		center		[in] box center
 *	\param		extents		[in] box extents
 *	\return		true if triangle & box overlap
 */
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
inline_ BOOL AABBTreeCollider::TriBoxOverlap(const IcePoint& center, const IcePoint& extents)
{
	// Stats
	mNbBVPrimTests++;

	// use separating axis theorem to test overlap between triangle and box 
	// need to test for overlap in these directions: 
	// 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle 
	//    we do not even need to test these) 
	// 2) normal of the triangle 
	// 3) crossproduct(edge from tri, {x,y,z}-directin) 
	//    this gives 3x3=9 more tests 

	// move everything so that the boxcenter is in (0,0,0) 
	IcePoint v0, v1, v2;
	v0.x = mLeafVerts[0].x - center.x;
	v1.x = mLeafVerts[1].x - center.x;
	v2.x = mLeafVerts[2].x - center.x;

	// First, test overlap in the {x,y,z}-directions
#ifdef OPC_USE_FCOMI
	// find min, max of the triangle in x-direction, and test for overlap in X
	if(FCMin3(v0.x, v1.x, v2.x)>extents.x)	return FALSE;
	if(FCMax3(v0.x, v1.x, v2.x)<-extents.x)	return FALSE;

	// same for Y
	v0.y = mLeafVerts[0].y - center.y;
	v1.y = mLeafVerts[1].y - center.y;
	v2.y = mLeafVerts[2].y - center.y;

	if(FCMin3(v0.y, v1.y, v2.y)>extents.y)	return FALSE;
	if(FCMax3(v0.y, v1.y, v2.y)<-extents.y)	return FALSE;

	// same for Z
	v0.z = mLeafVerts[0].z - center.z;
	v1.z = mLeafVerts[1].z - center.z;
	v2.z = mLeafVerts[2].z - center.z;

	if(FCMin3(v0.z, v1.z, v2.z)>extents.z)	return FALSE;
	if(FCMax3(v0.z, v1.z, v2.z)<-extents.z)	return FALSE;
#else
	float min,max;
	// Find min, max of the triangle in x-direction, and test for overlap in X
	FINDMINMAX(v0.x, v1.x, v2.x, min, max);
	if(min>extents.x || max<-extents.x) return FALSE;

	// Same for Y
	v0.y = mLeafVerts[0].y - center.y;
	v1.y = mLeafVerts[1].y - center.y;
	v2.y = mLeafVerts[2].y - center.y;

	FINDMINMAX(v0.y, v1.y, v2.y, min, max);
	if(min>extents.y || max<-extents.y) return FALSE;

	// Same for Z
	v0.z = mLeafVerts[0].z - center.z;
	v1.z = mLeafVerts[1].z - center.z;
	v2.z = mLeafVerts[2].z - center.z;

	FINDMINMAX(v0.z, v1.z, v2.z, min, max);
	if(min>extents.z || max<-extents.z) return FALSE;
#endif
	// 2) Test if the box intersects the plane of the triangle
	// compute plane equation of triangle: normal*x+d=0
	// ### could be precomputed since we use the same leaf triangle several times
	const IcePoint e0 = v1 - v0;
	const IcePoint e1 = v2 - v1;
	const IcePoint normal = e0 ^ e1;
	const float d = -normal|v0;
	if(!planeBoxOverlap(normal, d, extents)) return FALSE;

	// 3) "Class III" tests
	if(mFullPrimBoxTest)
	{
		IMPLEMENT_CLASS3_TESTS
	}
	return TRUE;
}

//! A dedicated version where the box is constant
inline_ BOOL OBBCollider::TriBoxOverlap()
{
	// Stats
	mNbVolumePrimTests++;

	// Hook
	const IcePoint& extents = mBoxExtents;
	const IcePoint& v0 = mLeafVerts[0];
	const IcePoint& v1 = mLeafVerts[1];
	const IcePoint& v2 = mLeafVerts[2];

	// use separating axis theorem to test overlap between triangle and box 
	// need to test for overlap in these directions: 
	// 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle 
	//    we do not even need to test these) 
	// 2) normal of the triangle 
	// 3) crossproduct(edge from tri, {x,y,z}-directin) 
	//    this gives 3x3=9 more tests 

	// Box center is already in (0,0,0)

	// First, test overlap in the {x,y,z}-directions
#ifdef OPC_USE_FCOMI
	// find min, max of the triangle in x-direction, and test for overlap in X
	if(FCMin3(v0.x, v1.x, v2.x)>mBoxExtents.x)	return FALSE;
	if(FCMax3(v0.x, v1.x, v2.x)<-mBoxExtents.x)	return FALSE;

	if(FCMin3(v0.y, v1.y, v2.y)>mBoxExtents.y)	return FALSE;
	if(FCMax3(v0.y, v1.y, v2.y)<-mBoxExtents.y)	return FALSE;

	if(FCMin3(v0.z, v1.z, v2.z)>mBoxExtents.z)	return FALSE;
	if(FCMax3(v0.z, v1.z, v2.z)<-mBoxExtents.z)	return FALSE;
#else
	float min,max;
	// Find min, max of the triangle in x-direction, and test for overlap in X
	FINDMINMAX(v0.x, v1.x, v2.x, min, max);
	if(min>mBoxExtents.x || max<-mBoxExtents.x) return FALSE;

	FINDMINMAX(v0.y, v1.y, v2.y, min, max);
	if(min>mBoxExtents.y || max<-mBoxExtents.y) return FALSE;

	FINDMINMAX(v0.z, v1.z, v2.z, min, max);
	if(min>mBoxExtents.z || max<-mBoxExtents.z) return FALSE;
#endif
	// 2) Test if the box intersects the plane of the triangle
	// compute plane equation of triangle: normal*x+d=0
	// ### could be precomputed since we use the same leaf triangle several times
	const IcePoint e0 = v1 - v0;
	const IcePoint e1 = v2 - v1;
	const IcePoint normal = e0 ^ e1;
	const float d = -normal|v0;
	if(!planeBoxOverlap(normal, d, mBoxExtents)) return FALSE;

	// 3) "Class III" tests - here we always do full tests since the box is a primitive (not a BV)
	{
		IMPLEMENT_CLASS3_TESTS
	}
	return TRUE;
}

//! ...and another one, jeez
inline_ BOOL AABBCollider::TriBoxOverlap()
{
	// Stats
	mNbVolumePrimTests++;

	// Hook
	const IcePoint& center		= mBox.mCenter;
	const IcePoint& extents	= mBox.mExtents;

	// use separating axis theorem to test overlap between triangle and box 
	// need to test for overlap in these directions: 
	// 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle 
	//    we do not even need to test these) 
	// 2) normal of the triangle 
	// 3) crossproduct(edge from tri, {x,y,z}-directin) 
	//    this gives 3x3=9 more tests 

	// move everything so that the boxcenter is in (0,0,0) 
	IcePoint v0, v1, v2;
	v0.x = mLeafVerts[0].x - center.x;
	v1.x = mLeafVerts[1].x - center.x;
	v2.x = mLeafVerts[2].x - center.x;

	// First, test overlap in the {x,y,z}-directions
#ifdef OPC_USE_FCOMI
	// find min, max of the triangle in x-direction, and test for overlap in X
	if(FCMin3(v0.x, v1.x, v2.x)>extents.x)	return FALSE;
	if(FCMax3(v0.x, v1.x, v2.x)<-extents.x)	return FALSE;

	// same for Y
	v0.y = mLeafVerts[0].y - center.y;
	v1.y = mLeafVerts[1].y - center.y;
	v2.y = mLeafVerts[2].y - center.y;

	if(FCMin3(v0.y, v1.y, v2.y)>extents.y)	return FALSE;
	if(FCMax3(v0.y, v1.y, v2.y)<-extents.y)	return FALSE;

	// same for Z
	v0.z = mLeafVerts[0].z - center.z;
	v1.z = mLeafVerts[1].z - center.z;
	v2.z = mLeafVerts[2].z - center.z;

	if(FCMin3(v0.z, v1.z, v2.z)>extents.z)	return FALSE;
	if(FCMax3(v0.z, v1.z, v2.z)<-extents.z)	return FALSE;
#else
	float min,max;
	// Find min, max of the triangle in x-direction, and test for overlap in X
	FINDMINMAX(v0.x, v1.x, v2.x, min, max);
	if(min>extents.x || max<-extents.x) return FALSE;

	// Same for Y
	v0.y = mLeafVerts[0].y - center.y;
	v1.y = mLeafVerts[1].y - center.y;
	v2.y = mLeafVerts[2].y - center.y;

	FINDMINMAX(v0.y, v1.y, v2.y, min, max);
	if(min>extents.y || max<-extents.y) return FALSE;

	// Same for Z
	v0.z = mLeafVerts[0].z - center.z;
	v1.z = mLeafVerts[1].z - center.z;
	v2.z = mLeafVerts[2].z - center.z;

	FINDMINMAX(v0.z, v1.z, v2.z, min, max);
	if(min>extents.z || max<-extents.z) return FALSE;
#endif
	// 2) Test if the box intersects the plane of the triangle
	// compute plane equation of triangle: normal*x+d=0
	// ### could be precomputed since we use the same leaf triangle several times
	const IcePoint e0 = v1 - v0;
	const IcePoint e1 = v2 - v1;
	const IcePoint normal = e0 ^ e1;
	const float d = -normal|v0;
	if(!planeBoxOverlap(normal, d, extents)) return FALSE;

	// 3) "Class III" tests - here we always do full tests since the box is a primitive (not a BV)
	{
		IMPLEMENT_CLASS3_TESTS
	}
	return TRUE;
}