summaryrefslogtreecommitdiffhomepage
path: root/vorbis/vq/vqgen.c
diff options
context:
space:
mode:
Diffstat (limited to 'vorbis/vq/vqgen.c')
-rw-r--r--vorbis/vq/vqgen.c566
1 files changed, 0 insertions, 566 deletions
diff --git a/vorbis/vq/vqgen.c b/vorbis/vq/vqgen.c
deleted file mode 100644
index 934d264..0000000
--- a/vorbis/vq/vqgen.c
+++ /dev/null
@@ -1,566 +0,0 @@
-/********************************************************************
- * *
- * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
- * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
- * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
- * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
- * *
- * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2001 *
- * by the Xiph.Org Foundation http://www.xiph.org/ *
- * *
- ********************************************************************
-
- function: train a VQ codebook
-
- ********************************************************************/
-
-/* This code is *not* part of libvorbis. It is used to generate
- trained codebooks offline and then spit the results into a
- pregenerated codebook that is compiled into libvorbis. It is an
- expensive (but good) algorithm. Run it on big iron. */
-
-/* There are so many optimizations to explore in *both* stages that
- considering the undertaking is almost withering. For now, we brute
- force it all */
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <math.h>
-#include <string.h>
-
-#include "vqgen.h"
-#include "bookutil.h"
-
-/* Codebook generation happens in two steps:
-
- 1) Train the codebook with data collected from the encoder: We use
- one of a few error metrics (which represent the distance between a
- given data point and a candidate point in the training set) to
- divide the training set up into cells representing roughly equal
- probability of occurring.
-
- 2) Generate the codebook and auxiliary data from the trained data set
-*/
-
-/* Codebook training ****************************************************
- *
- * The basic idea here is that a VQ codebook is like an m-dimensional
- * foam with n bubbles. The bubbles compete for space/volume and are
- * 'pressurized' [biased] according to some metric. The basic alg
- * iterates through allowing the bubbles to compete for space until
- * they converge (if the damping is dome properly) on a steady-state
- * solution. Individual input points, collected from libvorbis, are
- * used to train the algorithm monte-carlo style. */
-
-/* internal helpers *****************************************************/
-#define vN(data,i) (data+v->elements*i)
-
-/* default metric; squared 'distance' from desired value. */
-float _dist(vqgen *v,float *a, float *b){
- int i;
- int el=v->elements;
- float acc=0.f;
- for(i=0;i<el;i++){
- float val=(a[i]-b[i]);
- acc+=val*val;
- }
- return sqrt(acc);
-}
-
-float *_weight_null(vqgen *v,float *a){
- return a;
-}
-
-/* *must* be beefed up. */
-void _vqgen_seed(vqgen *v){
- long i;
- for(i=0;i<v->entries;i++)
- memcpy(_now(v,i),_point(v,i),sizeof(float)*v->elements);
- v->seeded=1;
-}
-
-int directdsort(const void *a, const void *b){
- float av=*((float *)a);
- float bv=*((float *)b);
- return (av<bv)-(av>bv);
-}
-
-void vqgen_cellmetric(vqgen *v){
- int j,k;
- float min=-1.f,max=-1.f,mean=0.f,acc=0.f;
- long dup=0,unused=0;
- #ifdef NOISY
- int i;
- char buff[80];
- float spacings[v->entries];
- int count=0;
- FILE *cells;
- sprintf(buff,"cellspace%d.m",v->it);
- cells=fopen(buff,"w");
-#endif
-
- /* minimum, maximum, cell spacing */
- for(j=0;j<v->entries;j++){
- float localmin=-1.;
-
- for(k=0;k<v->entries;k++){
- if(j!=k){
- float this=_dist(v,_now(v,j),_now(v,k));
- if(this>0){
- if(v->assigned[k] && (localmin==-1 || this<localmin))
- localmin=this;
- }else{
- if(k<j){
- dup++;
- break;
- }
- }
- }
- }
- if(k<v->entries)continue;
-
- if(v->assigned[j]==0){
- unused++;
- continue;
- }
-
- localmin=v->max[j]+localmin/2; /* this gives us rough diameter */
- if(min==-1 || localmin<min)min=localmin;
- if(max==-1 || localmin>max)max=localmin;
- mean+=localmin;
- acc++;
-#ifdef NOISY
- spacings[count++]=localmin;
-#endif
- }
-
- fprintf(stderr,"cell diameter: %.03g::%.03g::%.03g (%ld unused/%ld dup)\n",
- min,mean/acc,max,unused,dup);
-
-#ifdef NOISY
- qsort(spacings,count,sizeof(float),directdsort);
- for(i=0;i<count;i++)
- fprintf(cells,"%g\n",spacings[i]);
- fclose(cells);
-#endif
-
-}
-
-/* External calls *******************************************************/
-
-/* We have two forms of quantization; in the first, each vector
- element in the codebook entry is orthogonal. Residues would use this
- quantization for example.
-
- In the second, we have a sequence of monotonically increasing
- values that we wish to quantize as deltas (to save space). We
- still need to quantize so that absolute values are accurate. For
- example, LSP quantizes all absolute values, but the book encodes
- distance between values because each successive value is larger
- than the preceeding value. Thus the desired quantibits apply to
- the encoded (delta) values, not abs positions. This requires minor
- additional encode-side trickery. */
-
-void vqgen_quantize(vqgen *v,quant_meta *q){
-
- float maxdel;
- float mindel;
-
- float delta;
- float maxquant=((1<<q->quant)-1);
-
- int j,k;
-
- mindel=maxdel=_now(v,0)[0];
-
- for(j=0;j<v->entries;j++){
- float last=0.f;
- for(k=0;k<v->elements;k++){
- if(mindel>_now(v,j)[k]-last)mindel=_now(v,j)[k]-last;
- if(maxdel<_now(v,j)[k]-last)maxdel=_now(v,j)[k]-last;
- if(q->sequencep)last=_now(v,j)[k];
- }
- }
-
-
- /* first find the basic delta amount from the maximum span to be
- encoded. Loosen the delta slightly to allow for additional error
- during sequence quantization */
-
- delta=(maxdel-mindel)/((1<<q->quant)-1.5f);
-
- q->min=_float32_pack(mindel);
- q->delta=_float32_pack(delta);
-
- mindel=_float32_unpack(q->min);
- delta=_float32_unpack(q->delta);
-
- for(j=0;j<v->entries;j++){
- float last=0;
- for(k=0;k<v->elements;k++){
- float val=_now(v,j)[k];
- float now=rint((val-last-mindel)/delta);
-
- _now(v,j)[k]=now;
- if(now<0){
- /* be paranoid; this should be impossible */
- fprintf(stderr,"fault; quantized value<0\n");
- exit(1);
- }
-
- if(now>maxquant){
- /* be paranoid; this should be impossible */
- fprintf(stderr,"fault; quantized value>max\n");
- exit(1);
- }
- if(q->sequencep)last=(now*delta)+mindel+last;
- }
- }
-}
-
-/* much easier :-). Unlike in the codebook, we don't un-log log
- scales; we just make sure they're properly offset. */
-void vqgen_unquantize(vqgen *v,quant_meta *q){
- long j,k;
- float mindel=_float32_unpack(q->min);
- float delta=_float32_unpack(q->delta);
-
- for(j=0;j<v->entries;j++){
- float last=0.f;
- for(k=0;k<v->elements;k++){
- float now=_now(v,j)[k];
- now=fabs(now)*delta+last+mindel;
- if(q->sequencep)last=now;
- _now(v,j)[k]=now;
- }
- }
-}
-
-void vqgen_init(vqgen *v,int elements,int aux,int entries,float mindist,
- float (*metric)(vqgen *,float *, float *),
- float *(*weight)(vqgen *,float *),int centroid){
- memset(v,0,sizeof(vqgen));
-
- v->centroid=centroid;
- v->elements=elements;
- v->aux=aux;
- v->mindist=mindist;
- v->allocated=32768;
- v->pointlist=_ogg_malloc(v->allocated*(v->elements+v->aux)*sizeof(float));
-
- v->entries=entries;
- v->entrylist=_ogg_malloc(v->entries*v->elements*sizeof(float));
- v->assigned=_ogg_malloc(v->entries*sizeof(long));
- v->bias=_ogg_calloc(v->entries,sizeof(float));
- v->max=_ogg_calloc(v->entries,sizeof(float));
- if(metric)
- v->metric_func=metric;
- else
- v->metric_func=_dist;
- if(weight)
- v->weight_func=weight;
- else
- v->weight_func=_weight_null;
-
- v->asciipoints=tmpfile();
-
-}
-
-void vqgen_addpoint(vqgen *v, float *p,float *a){
- int k;
- for(k=0;k<v->elements;k++)
- fprintf(v->asciipoints,"%.12g\n",p[k]);
- for(k=0;k<v->aux;k++)
- fprintf(v->asciipoints,"%.12g\n",a[k]);
-
- if(v->points>=v->allocated){
- v->allocated*=2;
- v->pointlist=_ogg_realloc(v->pointlist,v->allocated*(v->elements+v->aux)*
- sizeof(float));
- }
-
- memcpy(_point(v,v->points),p,sizeof(float)*v->elements);
- if(v->aux)memcpy(_point(v,v->points)+v->elements,a,sizeof(float)*v->aux);
-
- /* quantize to the density mesh if it's selected */
- if(v->mindist>0.f){
- /* quantize to the mesh */
- for(k=0;k<v->elements+v->aux;k++)
- _point(v,v->points)[k]=
- rint(_point(v,v->points)[k]/v->mindist)*v->mindist;
- }
- v->points++;
- if(!(v->points&0xff))spinnit("loading... ",v->points);
-}
-
-/* yes, not threadsafe. These utils aren't */
-static int sortit=0;
-static int sortsize=0;
-static int meshcomp(const void *a,const void *b){
- if(((sortit++)&0xfff)==0)spinnit("sorting mesh...",sortit);
- return(memcmp(a,b,sortsize));
-}
-
-void vqgen_sortmesh(vqgen *v){
- sortit=0;
- if(v->mindist>0.f){
- long i,march=1;
-
- /* sort to make uniqueness detection trivial */
- sortsize=(v->elements+v->aux)*sizeof(float);
- qsort(v->pointlist,v->points,sortsize,meshcomp);
-
- /* now march through and eliminate dupes */
- for(i=1;i<v->points;i++){
- if(memcmp(_point(v,i),_point(v,i-1),sortsize)){
- /* a new, unique entry. march it down */
- if(i>march)memcpy(_point(v,march),_point(v,i),sortsize);
- march++;
- }
- spinnit("eliminating density... ",v->points-i);
- }
-
- /* we're done */
- fprintf(stderr,"\r%ld training points remining out of %ld"
- " after density mesh (%ld%%)\n",march,v->points,march*100/v->points);
- v->points=march;
-
- }
- v->sorted=1;
-}
-
-float vqgen_iterate(vqgen *v,int biasp){
- long i,j,k;
-
- float fdesired;
- long desired;
- long desired2;
-
- float asserror=0.f;
- float meterror=0.f;
- float *new;
- float *new2;
- long *nearcount;
- float *nearbias;
- #ifdef NOISY
- char buff[80];
- FILE *assig;
- FILE *bias;
- FILE *cells;
- sprintf(buff,"cells%d.m",v->it);
- cells=fopen(buff,"w");
- sprintf(buff,"assig%d.m",v->it);
- assig=fopen(buff,"w");
- sprintf(buff,"bias%d.m",v->it);
- bias=fopen(buff,"w");
- #endif
-
-
- if(v->entries<2){
- fprintf(stderr,"generation requires at least two entries\n");
- exit(1);
- }
-
- if(!v->sorted)vqgen_sortmesh(v);
- if(!v->seeded)_vqgen_seed(v);
-
- fdesired=(float)v->points/v->entries;
- desired=fdesired;
- desired2=desired*2;
- new=_ogg_malloc(sizeof(float)*v->entries*v->elements);
- new2=_ogg_malloc(sizeof(float)*v->entries*v->elements);
- nearcount=_ogg_malloc(v->entries*sizeof(long));
- nearbias=_ogg_malloc(v->entries*desired2*sizeof(float));
-
- /* fill in nearest points for entry biasing */
- /*memset(v->bias,0,sizeof(float)*v->entries);*/
- memset(nearcount,0,sizeof(long)*v->entries);
- memset(v->assigned,0,sizeof(long)*v->entries);
- if(biasp){
- for(i=0;i<v->points;i++){
- float *ppt=v->weight_func(v,_point(v,i));
- float firstmetric=v->metric_func(v,_now(v,0),ppt)+v->bias[0];
- float secondmetric=v->metric_func(v,_now(v,1),ppt)+v->bias[1];
- long firstentry=0;
- long secondentry=1;
-
- if(!(i&0xff))spinnit("biasing... ",v->points+v->points+v->entries-i);
-
- if(firstmetric>secondmetric){
- float temp=firstmetric;
- firstmetric=secondmetric;
- secondmetric=temp;
- firstentry=1;
- secondentry=0;
- }
-
- for(j=2;j<v->entries;j++){
- float thismetric=v->metric_func(v,_now(v,j),ppt)+v->bias[j];
- if(thismetric<secondmetric){
- if(thismetric<firstmetric){
- secondmetric=firstmetric;
- secondentry=firstentry;
- firstmetric=thismetric;
- firstentry=j;
- }else{
- secondmetric=thismetric;
- secondentry=j;
- }
- }
- }
-
- j=firstentry;
- for(j=0;j<v->entries;j++){
-
- float thismetric,localmetric;
- float *nearbiasptr=nearbias+desired2*j;
- long k=nearcount[j];
-
- localmetric=v->metric_func(v,_now(v,j),ppt);
- /* 'thismetric' is to be the bias value necessary in the current
- arrangement for entry j to capture point i */
- if(firstentry==j){
- /* use the secondary entry as the threshhold */
- thismetric=secondmetric-localmetric;
- }else{
- /* use the primary entry as the threshhold */
- thismetric=firstmetric-localmetric;
- }
-
- /* support the idea of 'minimum distance'... if we want the
- cells in a codebook to be roughly some minimum size (as with
- the low resolution residue books) */
-
- /* a cute two-stage delayed sorting hack */
- if(k<desired){
- nearbiasptr[k]=thismetric;
- k++;
- if(k==desired){
- spinnit("biasing... ",v->points+v->points+v->entries-i);
- qsort(nearbiasptr,desired,sizeof(float),directdsort);
- }
-
- }else if(thismetric>nearbiasptr[desired-1]){
- nearbiasptr[k]=thismetric;
- k++;
- if(k==desired2){
- spinnit("biasing... ",v->points+v->points+v->entries-i);
- qsort(nearbiasptr,desired2,sizeof(float),directdsort);
- k=desired;
- }
- }
- nearcount[j]=k;
- }
- }
-
- /* inflate/deflate */
-
- for(i=0;i<v->entries;i++){
- float *nearbiasptr=nearbias+desired2*i;
-
- spinnit("biasing... ",v->points+v->entries-i);
-
- /* due to the delayed sorting, we likely need to finish it off....*/
- if(nearcount[i]>desired)
- qsort(nearbiasptr,nearcount[i],sizeof(float),directdsort);
-
- v->bias[i]=nearbiasptr[desired-1];
-
- }
- }else{
- memset(v->bias,0,v->entries*sizeof(float));
- }
-
- /* Now assign with new bias and find new midpoints */
- for(i=0;i<v->points;i++){
- float *ppt=v->weight_func(v,_point(v,i));
- float firstmetric=v->metric_func(v,_now(v,0),ppt)+v->bias[0];
- long firstentry=0;
-
- if(!(i&0xff))spinnit("centering... ",v->points-i);
-
- for(j=0;j<v->entries;j++){
- float thismetric=v->metric_func(v,_now(v,j),ppt)+v->bias[j];
- if(thismetric<firstmetric){
- firstmetric=thismetric;
- firstentry=j;
- }
- }
-
- j=firstentry;
-
-#ifdef NOISY
- fprintf(cells,"%g %g\n%g %g\n\n",
- _now(v,j)[0],_now(v,j)[1],
- ppt[0],ppt[1]);
-#endif
-
- firstmetric-=v->bias[j];
- meterror+=firstmetric;
-
- if(v->centroid==0){
- /* set up midpoints for next iter */
- if(v->assigned[j]++){
- for(k=0;k<v->elements;k++)
- vN(new,j)[k]+=ppt[k];
- if(firstmetric>v->max[j])v->max[j]=firstmetric;
- }else{
- for(k=0;k<v->elements;k++)
- vN(new,j)[k]=ppt[k];
- v->max[j]=firstmetric;
- }
- }else{
- /* centroid */
- if(v->assigned[j]++){
- for(k=0;k<v->elements;k++){
- if(vN(new,j)[k]>ppt[k])vN(new,j)[k]=ppt[k];
- if(vN(new2,j)[k]<ppt[k])vN(new2,j)[k]=ppt[k];
- }
- if(firstmetric>v->max[firstentry])v->max[j]=firstmetric;
- }else{
- for(k=0;k<v->elements;k++){
- vN(new,j)[k]=ppt[k];
- vN(new2,j)[k]=ppt[k];
- }
- v->max[firstentry]=firstmetric;
- }
- }
- }
-
- /* assign midpoints */
-
- for(j=0;j<v->entries;j++){
-#ifdef NOISY
- fprintf(assig,"%ld\n",v->assigned[j]);
- fprintf(bias,"%g\n",v->bias[j]);
-#endif
- asserror+=fabs(v->assigned[j]-fdesired);
- if(v->assigned[j]){
- if(v->centroid==0){
- for(k=0;k<v->elements;k++)
- _now(v,j)[k]=vN(new,j)[k]/v->assigned[j];
- }else{
- for(k=0;k<v->elements;k++)
- _now(v,j)[k]=(vN(new,j)[k]+vN(new2,j)[k])/2.f;
- }
- }
- }
-
- asserror/=(v->entries*fdesired);
-
- fprintf(stderr,"Pass #%d... ",v->it);
- fprintf(stderr,": dist %g(%g) metric error=%g \n",
- asserror,fdesired,meterror/v->points);
- v->it++;
-
- free(new);
- free(nearcount);
- free(nearbias);
-#ifdef NOISY
- fclose(assig);
- fclose(bias);
- fclose(cells);
-#endif
- return(asserror);
-}
-