diff options
Diffstat (limited to 'Opcode/OPC_TriTriOverlap.h')
-rw-r--r-- | Opcode/OPC_TriTriOverlap.h | 558 |
1 files changed, 279 insertions, 279 deletions
diff --git a/Opcode/OPC_TriTriOverlap.h b/Opcode/OPC_TriTriOverlap.h index 1789566..a9ee9c5 100644 --- a/Opcode/OPC_TriTriOverlap.h +++ b/Opcode/OPC_TriTriOverlap.h @@ -1,279 +1,279 @@ -
-//! if OPC_TRITRI_EPSILON_TEST is true then we do a check (if |dv|<EPSILON then dv=0.0;) else no check is done (which is less robust, but faster)
-#define LOCAL_EPSILON 0.000001f
-
-//! sort so that a<=b
-#define SORT(a,b) \
- if(a>b) \
- { \
- const float c=a; \
- a=b; \
- b=c; \
- }
-
-//! Edge to edge test based on Franlin Antonio's gem: "Faster Line IceSegment Intersection", in Graphics Gems III, pp. 199-202
-#define EDGE_EDGE_TEST(V0, U0, U1) \
- Bx = U0[i0] - U1[i0]; \
- By = U0[i1] - U1[i1]; \
- Cx = V0[i0] - U0[i0]; \
- Cy = V0[i1] - U0[i1]; \
- f = Ay*Bx - Ax*By; \
- d = By*Cx - Bx*Cy; \
- if((f>0.0f && d>=0.0f && d<=f) || (f<0.0f && d<=0.0f && d>=f)) \
- { \
- const float e=Ax*Cy - Ay*Cx; \
- if(f>0.0f) \
- { \
- if(e>=0.0f && e<=f) return TRUE; \
- } \
- else \
- { \
- if(e<=0.0f && e>=f) return TRUE; \
- } \
- }
-
-//! TO BE DOCUMENTED
-#define EDGE_AGAINST_TRI_EDGES(V0, V1, U0, U1, U2) \
-{ \
- float Bx,By,Cx,Cy,d,f; \
- const float Ax = V1[i0] - V0[i0]; \
- const float Ay = V1[i1] - V0[i1]; \
- /* test edge U0,U1 against V0,V1 */ \
- EDGE_EDGE_TEST(V0, U0, U1); \
- /* test edge U1,U2 against V0,V1 */ \
- EDGE_EDGE_TEST(V0, U1, U2); \
- /* test edge U2,U1 against V0,V1 */ \
- EDGE_EDGE_TEST(V0, U2, U0); \
-}
-
-//! TO BE DOCUMENTED
-#define POINT_IN_TRI(V0, U0, U1, U2) \
-{ \
- /* is T1 completly inside T2? */ \
- /* check if V0 is inside tri(U0,U1,U2) */ \
- float a = U1[i1] - U0[i1]; \
- float b = -(U1[i0] - U0[i0]); \
- float c = -a*U0[i0] - b*U0[i1]; \
- float d0 = a*V0[i0] + b*V0[i1] + c; \
- \
- a = U2[i1] - U1[i1]; \
- b = -(U2[i0] - U1[i0]); \
- c = -a*U1[i0] - b*U1[i1]; \
- const float d1 = a*V0[i0] + b*V0[i1] + c; \
- \
- a = U0[i1] - U2[i1]; \
- b = -(U0[i0] - U2[i0]); \
- c = -a*U2[i0] - b*U2[i1]; \
- const float d2 = a*V0[i0] + b*V0[i1] + c; \
- if(d0*d1>0.0f) \
- { \
- if(d0*d2>0.0f) return TRUE; \
- } \
-}
-
-//! TO BE DOCUMENTED
-BOOL CoplanarTriTri(const IcePoint& n, const IcePoint& v0, const IcePoint& v1, const IcePoint& v2, const IcePoint& u0, const IcePoint& u1, const IcePoint& u2)
-{
- float A[3];
- short i0,i1;
- /* first project onto an axis-aligned plane, that maximizes the area */
- /* of the triangles, compute indices: i0,i1. */
- A[0] = fabsf(n[0]);
- A[1] = fabsf(n[1]);
- A[2] = fabsf(n[2]);
- if(A[0]>A[1])
- {
- if(A[0]>A[2])
- {
- i0=1; /* A[0] is greatest */
- i1=2;
- }
- else
- {
- i0=0; /* A[2] is greatest */
- i1=1;
- }
- }
- else /* A[0]<=A[1] */
- {
- if(A[2]>A[1])
- {
- i0=0; /* A[2] is greatest */
- i1=1;
- }
- else
- {
- i0=0; /* A[1] is greatest */
- i1=2;
- }
- }
-
- /* test all edges of triangle 1 against the edges of triangle 2 */
- EDGE_AGAINST_TRI_EDGES(v0, v1, u0, u1, u2);
- EDGE_AGAINST_TRI_EDGES(v1, v2, u0, u1, u2);
- EDGE_AGAINST_TRI_EDGES(v2, v0, u0, u1, u2);
-
- /* finally, test if tri1 is totally contained in tri2 or vice versa */
- POINT_IN_TRI(v0, u0, u1, u2);
- POINT_IN_TRI(u0, v0, v1, v2);
-
- return FALSE;
-}
-
-//! TO BE DOCUMENTED
-#define NEWCOMPUTE_INTERVALS(VV0, VV1, VV2, D0, D1, D2, D0D1, D0D2, A, B, C, X0, X1) \
-{ \
- if(D0D1>0.0f) \
- { \
- /* here we know that D0D2<=0.0 */ \
- /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
- A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \
- } \
- else if(D0D2>0.0f) \
- { \
- /* here we know that d0d1<=0.0 */ \
- A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \
- } \
- else if(D1*D2>0.0f || D0!=0.0f) \
- { \
- /* here we know that d0d1<=0.0 or that D0!=0.0 */ \
- A=VV0; B=(VV1 - VV0)*D0; C=(VV2 - VV0)*D0; X0=D0 - D1; X1=D0 - D2; \
- } \
- else if(D1!=0.0f) \
- { \
- A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \
- } \
- else if(D2!=0.0f) \
- { \
- A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \
- } \
- else \
- { \
- /* triangles are coplanar */ \
- return CoplanarTriTri(N1, V0, V1, V2, U0, U1, U2); \
- } \
-}
-
-///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-/**
- * Triangle/triangle intersection test routine,
- * by Tomas Moller, 1997.
- * See article "A Fast Triangle-Triangle Intersection Test",
- * Journal of Graphics Tools, 2(2), 1997
- *
- * Updated June 1999: removed the divisions -- a little faster now!
- * Updated October 1999: added {} to CROSS and SUB macros
- *
- * int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3],
- * float U0[3],float U1[3],float U2[3])
- *
- * \param V0 [in] triangle 0, vertex 0
- * \param V1 [in] triangle 0, vertex 1
- * \param V2 [in] triangle 0, vertex 2
- * \param U0 [in] triangle 1, vertex 0
- * \param U1 [in] triangle 1, vertex 1
- * \param U2 [in] triangle 1, vertex 2
- * \return true if triangles overlap
- */
-///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-inline_ BOOL AABBTreeCollider::TriTriOverlap(const IcePoint& V0, const IcePoint& V1, const IcePoint& V2, const IcePoint& U0, const IcePoint& U1, const IcePoint& U2)
-{
- // Stats
- mNbPrimPrimTests++;
-
- // Compute plane equation of triangle(V0,V1,V2)
- IcePoint E1 = V1 - V0;
- IcePoint E2 = V2 - V0;
- const IcePoint N1 = E1 ^ E2;
- const float d1 =-N1 | V0;
- // IcePlane equation 1: N1.X+d1=0
-
- // Put U0,U1,U2 into plane equation 1 to compute signed distances to the plane
- float du0 = (N1|U0) + d1;
- float du1 = (N1|U1) + d1;
- float du2 = (N1|U2) + d1;
-
- // Coplanarity robustness check
-#ifdef OPC_TRITRI_EPSILON_TEST
- if(fabsf(du0)<LOCAL_EPSILON) du0 = 0.0f;
- if(fabsf(du1)<LOCAL_EPSILON) du1 = 0.0f;
- if(fabsf(du2)<LOCAL_EPSILON) du2 = 0.0f;
-#endif
- const float du0du1 = du0 * du1;
- const float du0du2 = du0 * du2;
-
- if(du0du1>0.0f && du0du2>0.0f) // same sign on all of them + not equal 0 ?
- return FALSE; // no intersection occurs
-
- // Compute plane of triangle (U0,U1,U2)
- E1 = U1 - U0;
- E2 = U2 - U0;
- const IcePoint N2 = E1 ^ E2;
- const float d2=-N2 | U0;
- // plane equation 2: N2.X+d2=0
-
- // put V0,V1,V2 into plane equation 2
- float dv0 = (N2|V0) + d2;
- float dv1 = (N2|V1) + d2;
- float dv2 = (N2|V2) + d2;
-
-#ifdef OPC_TRITRI_EPSILON_TEST
- if(fabsf(dv0)<LOCAL_EPSILON) dv0 = 0.0f;
- if(fabsf(dv1)<LOCAL_EPSILON) dv1 = 0.0f;
- if(fabsf(dv2)<LOCAL_EPSILON) dv2 = 0.0f;
-#endif
-
- const float dv0dv1 = dv0 * dv1;
- const float dv0dv2 = dv0 * dv2;
-
- if(dv0dv1>0.0f && dv0dv2>0.0f) // same sign on all of them + not equal 0 ?
- return FALSE; // no intersection occurs
-
- // Compute direction of intersection line
- const IcePoint D = N1^N2;
-
- // Compute and index to the largest component of D
- float max=fabsf(D[0]);
- short index=0;
- float bb=fabsf(D[1]);
- float cc=fabsf(D[2]);
- if(bb>max) max=bb,index=1;
- if(cc>max) max=cc,index=2;
-
- // This is the simplified projection onto L
- const float vp0 = V0[index];
- const float vp1 = V1[index];
- const float vp2 = V2[index];
-
- const float up0 = U0[index];
- const float up1 = U1[index];
- const float up2 = U2[index];
-
- // Compute interval for triangle 1
- float a,b,c,x0,x1;
- NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1);
-
- // Compute interval for triangle 2
- float d,e,f,y0,y1;
- NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1);
-
- const float xx=x0*x1;
- const float yy=y0*y1;
- const float xxyy=xx*yy;
-
- float isect1[2], isect2[2];
-
- float tmp=a*xxyy;
- isect1[0]=tmp+b*x1*yy;
- isect1[1]=tmp+c*x0*yy;
-
- tmp=d*xxyy;
- isect2[0]=tmp+e*xx*y1;
- isect2[1]=tmp+f*xx*y0;
-
- SORT(isect1[0],isect1[1]);
- SORT(isect2[0],isect2[1]);
-
- if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return FALSE;
- return TRUE;
-}
+ +//! if OPC_TRITRI_EPSILON_TEST is true then we do a check (if |dv|<EPSILON then dv=0.0;) else no check is done (which is less robust, but faster) +#define LOCAL_EPSILON 0.000001f + +//! sort so that a<=b +#define SORT(a,b) \ + if(a>b) \ + { \ + const float c=a; \ + a=b; \ + b=c; \ + } + +//! Edge to edge test based on Franlin Antonio's gem: "Faster Line IceSegment Intersection", in Graphics Gems III, pp. 199-202 +#define EDGE_EDGE_TEST(V0, U0, U1) \ + Bx = U0[i0] - U1[i0]; \ + By = U0[i1] - U1[i1]; \ + Cx = V0[i0] - U0[i0]; \ + Cy = V0[i1] - U0[i1]; \ + f = Ay*Bx - Ax*By; \ + d = By*Cx - Bx*Cy; \ + if((f>0.0f && d>=0.0f && d<=f) || (f<0.0f && d<=0.0f && d>=f)) \ + { \ + const float e=Ax*Cy - Ay*Cx; \ + if(f>0.0f) \ + { \ + if(e>=0.0f && e<=f) return TRUE; \ + } \ + else \ + { \ + if(e<=0.0f && e>=f) return TRUE; \ + } \ + } + +//! TO BE DOCUMENTED +#define EDGE_AGAINST_TRI_EDGES(V0, V1, U0, U1, U2) \ +{ \ + float Bx,By,Cx,Cy,d,f; \ + const float Ax = V1[i0] - V0[i0]; \ + const float Ay = V1[i1] - V0[i1]; \ + /* test edge U0,U1 against V0,V1 */ \ + EDGE_EDGE_TEST(V0, U0, U1); \ + /* test edge U1,U2 against V0,V1 */ \ + EDGE_EDGE_TEST(V0, U1, U2); \ + /* test edge U2,U1 against V0,V1 */ \ + EDGE_EDGE_TEST(V0, U2, U0); \ +} + +//! TO BE DOCUMENTED +#define POINT_IN_TRI(V0, U0, U1, U2) \ +{ \ + /* is T1 completly inside T2? */ \ + /* check if V0 is inside tri(U0,U1,U2) */ \ + float a = U1[i1] - U0[i1]; \ + float b = -(U1[i0] - U0[i0]); \ + float c = -a*U0[i0] - b*U0[i1]; \ + float d0 = a*V0[i0] + b*V0[i1] + c; \ + \ + a = U2[i1] - U1[i1]; \ + b = -(U2[i0] - U1[i0]); \ + c = -a*U1[i0] - b*U1[i1]; \ + const float d1 = a*V0[i0] + b*V0[i1] + c; \ + \ + a = U0[i1] - U2[i1]; \ + b = -(U0[i0] - U2[i0]); \ + c = -a*U2[i0] - b*U2[i1]; \ + const float d2 = a*V0[i0] + b*V0[i1] + c; \ + if(d0*d1>0.0f) \ + { \ + if(d0*d2>0.0f) return TRUE; \ + } \ +} + +//! TO BE DOCUMENTED +BOOL CoplanarTriTri(const IcePoint& n, const IcePoint& v0, const IcePoint& v1, const IcePoint& v2, const IcePoint& u0, const IcePoint& u1, const IcePoint& u2) +{ + float A[3]; + short i0,i1; + /* first project onto an axis-aligned plane, that maximizes the area */ + /* of the triangles, compute indices: i0,i1. */ + A[0] = fabsf(n[0]); + A[1] = fabsf(n[1]); + A[2] = fabsf(n[2]); + if(A[0]>A[1]) + { + if(A[0]>A[2]) + { + i0=1; /* A[0] is greatest */ + i1=2; + } + else + { + i0=0; /* A[2] is greatest */ + i1=1; + } + } + else /* A[0]<=A[1] */ + { + if(A[2]>A[1]) + { + i0=0; /* A[2] is greatest */ + i1=1; + } + else + { + i0=0; /* A[1] is greatest */ + i1=2; + } + } + + /* test all edges of triangle 1 against the edges of triangle 2 */ + EDGE_AGAINST_TRI_EDGES(v0, v1, u0, u1, u2); + EDGE_AGAINST_TRI_EDGES(v1, v2, u0, u1, u2); + EDGE_AGAINST_TRI_EDGES(v2, v0, u0, u1, u2); + + /* finally, test if tri1 is totally contained in tri2 or vice versa */ + POINT_IN_TRI(v0, u0, u1, u2); + POINT_IN_TRI(u0, v0, v1, v2); + + return FALSE; +} + +//! TO BE DOCUMENTED +#define NEWCOMPUTE_INTERVALS(VV0, VV1, VV2, D0, D1, D2, D0D1, D0D2, A, B, C, X0, X1) \ +{ \ + if(D0D1>0.0f) \ + { \ + /* here we know that D0D2<=0.0 */ \ + /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \ + A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \ + } \ + else if(D0D2>0.0f) \ + { \ + /* here we know that d0d1<=0.0 */ \ + A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \ + } \ + else if(D1*D2>0.0f || D0!=0.0f) \ + { \ + /* here we know that d0d1<=0.0 or that D0!=0.0 */ \ + A=VV0; B=(VV1 - VV0)*D0; C=(VV2 - VV0)*D0; X0=D0 - D1; X1=D0 - D2; \ + } \ + else if(D1!=0.0f) \ + { \ + A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \ + } \ + else if(D2!=0.0f) \ + { \ + A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \ + } \ + else \ + { \ + /* triangles are coplanar */ \ + return CoplanarTriTri(N1, V0, V1, V2, U0, U1, U2); \ + } \ +} + +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +/** + * Triangle/triangle intersection test routine, + * by Tomas Moller, 1997. + * See article "A Fast Triangle-Triangle Intersection Test", + * Journal of Graphics Tools, 2(2), 1997 + * + * Updated June 1999: removed the divisions -- a little faster now! + * Updated October 1999: added {} to CROSS and SUB macros + * + * int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3], + * float U0[3],float U1[3],float U2[3]) + * + * \param V0 [in] triangle 0, vertex 0 + * \param V1 [in] triangle 0, vertex 1 + * \param V2 [in] triangle 0, vertex 2 + * \param U0 [in] triangle 1, vertex 0 + * \param U1 [in] triangle 1, vertex 1 + * \param U2 [in] triangle 1, vertex 2 + * \return true if triangles overlap + */ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +inline_ BOOL AABBTreeCollider::TriTriOverlap(const IcePoint& V0, const IcePoint& V1, const IcePoint& V2, const IcePoint& U0, const IcePoint& U1, const IcePoint& U2) +{ + // Stats + mNbPrimPrimTests++; + + // Compute plane equation of triangle(V0,V1,V2) + IcePoint E1 = V1 - V0; + IcePoint E2 = V2 - V0; + const IcePoint N1 = E1 ^ E2; + const float d1 =-N1 | V0; + // IcePlane equation 1: N1.X+d1=0 + + // Put U0,U1,U2 into plane equation 1 to compute signed distances to the plane + float du0 = (N1|U0) + d1; + float du1 = (N1|U1) + d1; + float du2 = (N1|U2) + d1; + + // Coplanarity robustness check +#ifdef OPC_TRITRI_EPSILON_TEST + if(fabsf(du0)<LOCAL_EPSILON) du0 = 0.0f; + if(fabsf(du1)<LOCAL_EPSILON) du1 = 0.0f; + if(fabsf(du2)<LOCAL_EPSILON) du2 = 0.0f; +#endif + const float du0du1 = du0 * du1; + const float du0du2 = du0 * du2; + + if(du0du1>0.0f && du0du2>0.0f) // same sign on all of them + not equal 0 ? + return FALSE; // no intersection occurs + + // Compute plane of triangle (U0,U1,U2) + E1 = U1 - U0; + E2 = U2 - U0; + const IcePoint N2 = E1 ^ E2; + const float d2=-N2 | U0; + // plane equation 2: N2.X+d2=0 + + // put V0,V1,V2 into plane equation 2 + float dv0 = (N2|V0) + d2; + float dv1 = (N2|V1) + d2; + float dv2 = (N2|V2) + d2; + +#ifdef OPC_TRITRI_EPSILON_TEST + if(fabsf(dv0)<LOCAL_EPSILON) dv0 = 0.0f; + if(fabsf(dv1)<LOCAL_EPSILON) dv1 = 0.0f; + if(fabsf(dv2)<LOCAL_EPSILON) dv2 = 0.0f; +#endif + + const float dv0dv1 = dv0 * dv1; + const float dv0dv2 = dv0 * dv2; + + if(dv0dv1>0.0f && dv0dv2>0.0f) // same sign on all of them + not equal 0 ? + return FALSE; // no intersection occurs + + // Compute direction of intersection line + const IcePoint D = N1^N2; + + // Compute and index to the largest component of D + float max=fabsf(D[0]); + short index=0; + float bb=fabsf(D[1]); + float cc=fabsf(D[2]); + if(bb>max) max=bb,index=1; + if(cc>max) max=cc,index=2; + + // This is the simplified projection onto L + const float vp0 = V0[index]; + const float vp1 = V1[index]; + const float vp2 = V2[index]; + + const float up0 = U0[index]; + const float up1 = U1[index]; + const float up2 = U2[index]; + + // Compute interval for triangle 1 + float a,b,c,x0,x1; + NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1); + + // Compute interval for triangle 2 + float d,e,f,y0,y1; + NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1); + + const float xx=x0*x1; + const float yy=y0*y1; + const float xxyy=xx*yy; + + float isect1[2], isect2[2]; + + float tmp=a*xxyy; + isect1[0]=tmp+b*x1*yy; + isect1[1]=tmp+c*x0*yy; + + tmp=d*xxyy; + isect2[0]=tmp+e*xx*y1; + isect2[1]=tmp+f*xx*y0; + + SORT(isect1[0],isect1[1]); + SORT(isect2[0],isect2[1]); + + if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return FALSE; + return TRUE; +} |