summaryrefslogtreecommitdiffhomepage
path: root/Opcode/Ice/IceMatrix4x4.h
diff options
context:
space:
mode:
Diffstat (limited to 'Opcode/Ice/IceMatrix4x4.h')
-rw-r--r--Opcode/Ice/IceMatrix4x4.h910
1 files changed, 455 insertions, 455 deletions
diff --git a/Opcode/Ice/IceMatrix4x4.h b/Opcode/Ice/IceMatrix4x4.h
index 0b08a4a..82ebc05 100644
--- a/Opcode/Ice/IceMatrix4x4.h
+++ b/Opcode/Ice/IceMatrix4x4.h
@@ -1,455 +1,455 @@
-///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-/**
- * Contains code for 4x4 matrices.
- * \file IceMatrix4x4.h
- * \author Pierre Terdiman
- * \date April, 4, 2000
- */
-///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-
-///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-// Include Guard
-#ifndef __ICEMATRIX4X4_H__
-#define __ICEMATRIX4X4_H__
-
- // Forward declarations
- class PRS;
- class PR;
-
- #define MATRIX4X4_EPSILON (1.0e-7f)
-
- class ICEMATHS_API Matrix4x4
- {
-// void LUBackwardSubstitution( sdword *indx, float* b );
-// void LUDecomposition( sdword* indx, float* d );
-
- public:
- //! Empty constructor.
- inline_ Matrix4x4() {}
- //! Constructor from 16 values
- inline_ Matrix4x4( float m00, float m01, float m02, float m03,
- float m10, float m11, float m12, float m13,
- float m20, float m21, float m22, float m23,
- float m30, float m31, float m32, float m33)
- {
- m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03;
- m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13;
- m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23;
- m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33;
- }
- //! Copy constructor
- inline_ Matrix4x4(const Matrix4x4& mat) { CopyMemory(m, &mat.m, 16*sizeof(float)); }
- //! Destructor.
- inline_ ~Matrix4x4() {}
-
- //! Assign values (rotation only)
- inline_ Matrix4x4& Set( float m00, float m01, float m02,
- float m10, float m11, float m12,
- float m20, float m21, float m22)
- {
- m[0][0] = m00; m[0][1] = m01; m[0][2] = m02;
- m[1][0] = m10; m[1][1] = m11; m[1][2] = m12;
- m[2][0] = m20; m[2][1] = m21; m[2][2] = m22;
- return *this;
- }
- //! Assign values
- inline_ Matrix4x4& Set( float m00, float m01, float m02, float m03,
- float m10, float m11, float m12, float m13,
- float m20, float m21, float m22, float m23,
- float m30, float m31, float m32, float m33)
- {
- m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03;
- m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13;
- m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23;
- m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33;
- return *this;
- }
-
- //! Copy from a Matrix4x4
- inline_ void Copy(const Matrix4x4& source) { CopyMemory(m, source.m, 16*sizeof(float)); }
-
- // Row-column access
- //! Returns a row.
- inline_ void GetRow(const udword r, HPoint& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; p.w=m[r][3]; }
- //! Returns a row.
- inline_ void GetRow(const udword r, IcePoint& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; }
- //! Returns a row.
- inline_ const HPoint& GetRow(const udword r) const { return *(const HPoint*)&m[r][0]; }
- //! Returns a row.
- inline_ HPoint& GetRow(const udword r) { return *(HPoint*)&m[r][0]; }
- //! Sets a row.
- inline_ void SetRow(const udword r, const HPoint& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]=p.w; }
- //! Sets a row.
- inline_ void SetRow(const udword r, const IcePoint& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]= (r!=3) ? 0.0f : 1.0f; }
- //! Returns a column.
- inline_ void GetCol(const udword c, HPoint& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; p.w=m[3][c]; }
- //! Returns a column.
- inline_ void GetCol(const udword c, IcePoint& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; }
- //! Sets a column.
- inline_ void SetCol(const udword c, const HPoint& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]=p.w; }
- //! Sets a column.
- inline_ void SetCol(const udword c, const IcePoint& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]= (c!=3) ? 0.0f : 1.0f; }
-
- // Translation
- //! Returns the translation part of the matrix.
- inline_ const HPoint& GetTrans() const { return GetRow(3); }
- //! Gets the translation part of the matrix
- inline_ void GetTrans(IcePoint& p) const { p.x=m[3][0]; p.y=m[3][1]; p.z=m[3][2]; }
- //! Sets the translation part of the matrix, from a Point.
- inline_ void SetTrans(const IcePoint& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; }
- //! Sets the translation part of the matrix, from a HPoint.
- inline_ void SetTrans(const HPoint& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; m[3][3]=p.w; }
- //! Sets the translation part of the matrix, from floats.
- inline_ void SetTrans(float tx, float ty, float tz) { m[3][0]=tx; m[3][1]=ty; m[3][2]=tz; }
-
- // Scale
- //! Sets the scale from a Point. The point is put on the diagonal.
- inline_ void SetScale(const IcePoint& p) { m[0][0]=p.x; m[1][1]=p.y; m[2][2]=p.z; }
- //! Sets the scale from floats. Values are put on the diagonal.
- inline_ void SetScale(float sx, float sy, float sz) { m[0][0]=sx; m[1][1]=sy; m[2][2]=sz; }
- //! Scales from a Point. Each row is multiplied by a component.
- void Scale(const IcePoint& p)
- {
- m[0][0] *= p.x; m[1][0] *= p.y; m[2][0] *= p.z;
- m[0][1] *= p.x; m[1][1] *= p.y; m[2][1] *= p.z;
- m[0][2] *= p.x; m[1][2] *= p.y; m[2][2] *= p.z;
- }
- //! Scales from floats. Each row is multiplied by a value.
- void Scale(float sx, float sy, float sz)
- {
- m[0][0] *= sx; m[1][0] *= sy; m[2][0] *= sz;
- m[0][1] *= sx; m[1][1] *= sy; m[2][1] *= sz;
- m[0][2] *= sx; m[1][2] *= sy; m[2][2] *= sz;
- }
-/*
- //! Returns a row.
- inline_ HPoint GetRow(const udword row) const { return mRow[row]; }
- //! Sets a row.
- inline_ Matrix4x4& SetRow(const udword row, const HPoint& p) { mRow[row] = p; return *this; }
- //! Sets a row.
- Matrix4x4& SetRow(const udword row, const Point& p)
- {
- m[row][0] = p.x;
- m[row][1] = p.y;
- m[row][2] = p.z;
- m[row][3] = (row != 3) ? 0.0f : 1.0f;
- return *this;
- }
- //! Returns a column.
- HPoint GetCol(const udword col) const
- {
- HPoint Res;
- Res.x = m[0][col];
- Res.y = m[1][col];
- Res.z = m[2][col];
- Res.w = m[3][col];
- return Res;
- }
- //! Sets a column.
- Matrix4x4& SetCol(const udword col, const HPoint& p)
- {
- m[0][col] = p.x;
- m[1][col] = p.y;
- m[2][col] = p.z;
- m[3][col] = p.w;
- return *this;
- }
- //! Sets a column.
- Matrix4x4& SetCol(const udword col, const Point& p)
- {
- m[0][col] = p.x;
- m[1][col] = p.y;
- m[2][col] = p.z;
- m[3][col] = (col != 3) ? 0.0f : 1.0f;
- return *this;
- }
-*/
- //! Computes the trace. The trace is the sum of the 4 diagonal components.
- inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2] + m[3][3]; }
- //! Computes the trace of the upper 3x3 matrix.
- inline_ float Trace3x3() const { return m[0][0] + m[1][1] + m[2][2]; }
- //! Clears the matrix.
- inline_ void Zero() { ZeroMemory(&m, sizeof(m)); }
- //! Sets the identity matrix.
- inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f; }
- //! Checks for identity
- inline_ bool IsIdentity() const
- {
- if(IR(m[0][0])!=IEEE_1_0) return false;
- if(IR(m[0][1])!=0) return false;
- if(IR(m[0][2])!=0) return false;
- if(IR(m[0][3])!=0) return false;
-
- if(IR(m[1][0])!=0) return false;
- if(IR(m[1][1])!=IEEE_1_0) return false;
- if(IR(m[1][2])!=0) return false;
- if(IR(m[1][3])!=0) return false;
-
- if(IR(m[2][0])!=0) return false;
- if(IR(m[2][1])!=0) return false;
- if(IR(m[2][2])!=IEEE_1_0) return false;
- if(IR(m[2][3])!=0) return false;
-
- if(IR(m[3][0])!=0) return false;
- if(IR(m[3][1])!=0) return false;
- if(IR(m[3][2])!=0) return false;
- if(IR(m[3][3])!=IEEE_1_0) return false;
- return true;
- }
-
- //! Checks matrix validity
- inline_ BOOL IsValid() const
- {
- for(udword j=0;j<4;j++)
- {
- for(udword i=0;i<4;i++)
- {
- if(!IsValidFloat(m[j][i])) return FALSE;
- }
- }
- return TRUE;
- }
-
- //! Sets a rotation matrix around the X axis.
- void RotX(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[1][1] = m[2][2] = Cos; m[2][1] = -Sin; m[1][2] = Sin; }
- //! Sets a rotation matrix around the Y axis.
- void RotY(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[2][2] = Cos; m[2][0] = Sin; m[0][2] = -Sin; }
- //! Sets a rotation matrix around the Z axis.
- void RotZ(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[1][1] = Cos; m[1][0] = -Sin; m[0][1] = Sin; }
-
- //! Makes a rotation matrix about an arbitrary axis
- Matrix4x4& Rot(float angle, IcePoint& p1, IcePoint& p2);
-
- //! Transposes the matrix.
- void Transpose()
- {
- IR(m[1][0]) ^= IR(m[0][1]); IR(m[0][1]) ^= IR(m[1][0]); IR(m[1][0]) ^= IR(m[0][1]);
- IR(m[2][0]) ^= IR(m[0][2]); IR(m[0][2]) ^= IR(m[2][0]); IR(m[2][0]) ^= IR(m[0][2]);
- IR(m[3][0]) ^= IR(m[0][3]); IR(m[0][3]) ^= IR(m[3][0]); IR(m[3][0]) ^= IR(m[0][3]);
- IR(m[1][2]) ^= IR(m[2][1]); IR(m[2][1]) ^= IR(m[1][2]); IR(m[1][2]) ^= IR(m[2][1]);
- IR(m[1][3]) ^= IR(m[3][1]); IR(m[3][1]) ^= IR(m[1][3]); IR(m[1][3]) ^= IR(m[3][1]);
- IR(m[2][3]) ^= IR(m[3][2]); IR(m[3][2]) ^= IR(m[2][3]); IR(m[2][3]) ^= IR(m[3][2]);
- }
-
- //! Computes a cofactor. Used for matrix inversion.
- float CoFactor(udword row, udword col) const;
- //! Computes the determinant of the matrix.
- float Determinant() const;
- //! Inverts the matrix. Determinant must be different from zero, else matrix can't be inverted.
- Matrix4x4& Invert();
-// Matrix& ComputeAxisMatrix(Point& axis, float angle);
-
- // Cast operators
- //! Casts a Matrix4x4 to a Matrix3x3.
- inline_ operator Matrix3x3() const
- {
- return Matrix3x3(
- m[0][0], m[0][1], m[0][2],
- m[1][0], m[1][1], m[1][2],
- m[2][0], m[2][1], m[2][2]);
- }
- //! Casts a Matrix4x4 to a Quat.
- operator Quat() const;
- //! Casts a Matrix4x4 to a PR.
- operator PR() const;
-
- // Arithmetic operators
- //! Operator for Matrix4x4 Plus = Matrix4x4 + Matrix4x4;
- inline_ Matrix4x4 operator+(const Matrix4x4& mat) const
- {
- return Matrix4x4(
- m[0][0]+mat.m[0][0], m[0][1]+mat.m[0][1], m[0][2]+mat.m[0][2], m[0][3]+mat.m[0][3],
- m[1][0]+mat.m[1][0], m[1][1]+mat.m[1][1], m[1][2]+mat.m[1][2], m[1][3]+mat.m[1][3],
- m[2][0]+mat.m[2][0], m[2][1]+mat.m[2][1], m[2][2]+mat.m[2][2], m[2][3]+mat.m[2][3],
- m[3][0]+mat.m[3][0], m[3][1]+mat.m[3][1], m[3][2]+mat.m[3][2], m[3][3]+mat.m[3][3]);
- }
-
- //! Operator for Matrix4x4 Minus = Matrix4x4 - Matrix4x4;
- inline_ Matrix4x4 operator-(const Matrix4x4& mat) const
- {
- return Matrix4x4(
- m[0][0]-mat.m[0][0], m[0][1]-mat.m[0][1], m[0][2]-mat.m[0][2], m[0][3]-mat.m[0][3],
- m[1][0]-mat.m[1][0], m[1][1]-mat.m[1][1], m[1][2]-mat.m[1][2], m[1][3]-mat.m[1][3],
- m[2][0]-mat.m[2][0], m[2][1]-mat.m[2][1], m[2][2]-mat.m[2][2], m[2][3]-mat.m[2][3],
- m[3][0]-mat.m[3][0], m[3][1]-mat.m[3][1], m[3][2]-mat.m[3][2], m[3][3]-mat.m[3][3]);
- }
-
- //! Operator for Matrix4x4 Mul = Matrix4x4 * Matrix4x4;
- inline_ Matrix4x4 operator*(const Matrix4x4& mat) const
- {
- return Matrix4x4(
- m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0] + m[0][3]*mat.m[3][0],
- m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1] + m[0][3]*mat.m[3][1],
- m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2] + m[0][3]*mat.m[3][2],
- m[0][0]*mat.m[0][3] + m[0][1]*mat.m[1][3] + m[0][2]*mat.m[2][3] + m[0][3]*mat.m[3][3],
-
- m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0] + m[1][3]*mat.m[3][0],
- m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1] + m[1][3]*mat.m[3][1],
- m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2] + m[1][3]*mat.m[3][2],
- m[1][0]*mat.m[0][3] + m[1][1]*mat.m[1][3] + m[1][2]*mat.m[2][3] + m[1][3]*mat.m[3][3],
-
- m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0] + m[2][3]*mat.m[3][0],
- m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1] + m[2][3]*mat.m[3][1],
- m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2] + m[2][3]*mat.m[3][2],
- m[2][0]*mat.m[0][3] + m[2][1]*mat.m[1][3] + m[2][2]*mat.m[2][3] + m[2][3]*mat.m[3][3],
-
- m[3][0]*mat.m[0][0] + m[3][1]*mat.m[1][0] + m[3][2]*mat.m[2][0] + m[3][3]*mat.m[3][0],
- m[3][0]*mat.m[0][1] + m[3][1]*mat.m[1][1] + m[3][2]*mat.m[2][1] + m[3][3]*mat.m[3][1],
- m[3][0]*mat.m[0][2] + m[3][1]*mat.m[1][2] + m[3][2]*mat.m[2][2] + m[3][3]*mat.m[3][2],
- m[3][0]*mat.m[0][3] + m[3][1]*mat.m[1][3] + m[3][2]*mat.m[2][3] + m[3][3]*mat.m[3][3]);
- }
-
- //! Operator for HPoint Mul = Matrix4x4 * HPoint;
- inline_ HPoint operator*(const HPoint& v) const { return HPoint(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v, GetRow(3)|v); }
-
- //! Operator for Point Mul = Matrix4x4 * Point;
- inline_ IcePoint operator*(const IcePoint& v) const
- {
- return IcePoint( m[0][0]*v.x + m[0][1]*v.y + m[0][2]*v.z + m[0][3],
- m[1][0]*v.x + m[1][1]*v.y + m[1][2]*v.z + m[1][3],
- m[2][0]*v.x + m[2][1]*v.y + m[2][2]*v.z + m[2][3] );
- }
-
- //! Operator for Matrix4x4 Scale = Matrix4x4 * float;
- inline_ Matrix4x4 operator*(float s) const
- {
- return Matrix4x4(
- m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s,
- m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s,
- m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s,
- m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s);
- }
-
- //! Operator for Matrix4x4 Scale = float * Matrix4x4;
- inline_ friend Matrix4x4 operator*(float s, const Matrix4x4& mat)
- {
- return Matrix4x4(
- s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2], s*mat.m[0][3],
- s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2], s*mat.m[1][3],
- s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2], s*mat.m[2][3],
- s*mat.m[3][0], s*mat.m[3][1], s*mat.m[3][2], s*mat.m[3][3]);
- }
-
- //! Operator for Matrix4x4 Div = Matrix4x4 / float;
- inline_ Matrix4x4 operator/(float s) const
- {
- if(s) s = 1.0f / s;
-
- return Matrix4x4(
- m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s,
- m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s,
- m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s,
- m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s);
- }
-
- //! Operator for Matrix4x4 Div = float / Matrix4x4;
- inline_ friend Matrix4x4 operator/(float s, const Matrix4x4& mat)
- {
- return Matrix4x4(
- s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2], s/mat.m[0][3],
- s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2], s/mat.m[1][3],
- s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2], s/mat.m[2][3],
- s/mat.m[3][0], s/mat.m[3][1], s/mat.m[3][2], s/mat.m[3][3]);
- }
-
- //! Operator for Matrix4x4 += Matrix4x4;
- inline_ Matrix4x4& operator+=(const Matrix4x4& mat)
- {
- m[0][0]+=mat.m[0][0]; m[0][1]+=mat.m[0][1]; m[0][2]+=mat.m[0][2]; m[0][3]+=mat.m[0][3];
- m[1][0]+=mat.m[1][0]; m[1][1]+=mat.m[1][1]; m[1][2]+=mat.m[1][2]; m[1][3]+=mat.m[1][3];
- m[2][0]+=mat.m[2][0]; m[2][1]+=mat.m[2][1]; m[2][2]+=mat.m[2][2]; m[2][3]+=mat.m[2][3];
- m[3][0]+=mat.m[3][0]; m[3][1]+=mat.m[3][1]; m[3][2]+=mat.m[3][2]; m[3][3]+=mat.m[3][3];
- return *this;
- }
-
- //! Operator for Matrix4x4 -= Matrix4x4;
- inline_ Matrix4x4& operator-=(const Matrix4x4& mat)
- {
- m[0][0]-=mat.m[0][0]; m[0][1]-=mat.m[0][1]; m[0][2]-=mat.m[0][2]; m[0][3]-=mat.m[0][3];
- m[1][0]-=mat.m[1][0]; m[1][1]-=mat.m[1][1]; m[1][2]-=mat.m[1][2]; m[1][3]-=mat.m[1][3];
- m[2][0]-=mat.m[2][0]; m[2][1]-=mat.m[2][1]; m[2][2]-=mat.m[2][2]; m[2][3]-=mat.m[2][3];
- m[3][0]-=mat.m[3][0]; m[3][1]-=mat.m[3][1]; m[3][2]-=mat.m[3][2]; m[3][3]-=mat.m[3][3];
- return *this;
- }
-
- //! Operator for Matrix4x4 *= Matrix4x4;
- Matrix4x4& operator*=(const Matrix4x4& mat)
- {
- HPoint TempRow;
-
- GetRow(0, TempRow);
- m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
- m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
- m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
- m[0][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
-
- GetRow(1, TempRow);
- m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
- m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
- m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
- m[1][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
-
- GetRow(2, TempRow);
- m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
- m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
- m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
- m[2][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
-
- GetRow(3, TempRow);
- m[3][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
- m[3][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
- m[3][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
- m[3][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
-
- return *this;
- }
-
- //! Operator for Matrix4x4 *= float;
- inline_ Matrix4x4& operator*=(float s)
- {
- m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s;
- m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s;
- m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s;
- m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s;
- return *this;
- }
-
- //! Operator for Matrix4x4 /= float;
- inline_ Matrix4x4& operator/=(float s)
- {
- if(s) s = 1.0f / s;
- m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s;
- m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s;
- m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s;
- m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s;
- return *this;
- }
-
- inline_ const HPoint& operator[](int row) const { return *(const HPoint*)&m[row][0]; }
- inline_ HPoint& operator[](int row) { return *(HPoint*)&m[row][0]; }
-
- public:
-
- float m[4][4];
- };
-
- //! Quickly rotates & translates a vector, using the 4x3 part of a 4x4 matrix
- inline_ void TransformPoint4x3(IcePoint& dest, const IcePoint& source, const Matrix4x4& rot)
- {
- dest.x = rot.m[3][0] + source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
- dest.y = rot.m[3][1] + source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
- dest.z = rot.m[3][2] + source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
- }
-
- //! Quickly rotates a vector, using the 3x3 part of a 4x4 matrix
- inline_ void TransformPoint3x3(IcePoint& dest, const IcePoint& source, const Matrix4x4& rot)
- {
- dest.x = source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
- dest.y = source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
- dest.z = source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
- }
-
- ICEMATHS_API void InvertPRMatrix(Matrix4x4& dest, const Matrix4x4& src);
-
-#endif // __ICEMATRIX4X4_H__
-
+///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/**
+ * Contains code for 4x4 matrices.
+ * \file IceMatrix4x4.h
+ * \author Pierre Terdiman
+ * \date April, 4, 2000
+ */
+///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+// Include Guard
+#ifndef __ICEMATRIX4X4_H__
+#define __ICEMATRIX4X4_H__
+
+ // Forward declarations
+ class PRS;
+ class PR;
+
+ #define MATRIX4X4_EPSILON (1.0e-7f)
+
+ class ICEMATHS_API Matrix4x4
+ {
+// void LUBackwardSubstitution( sdword *indx, float* b );
+// void LUDecomposition( sdword* indx, float* d );
+
+ public:
+ //! Empty constructor.
+ inline_ Matrix4x4() {}
+ //! Constructor from 16 values
+ inline_ Matrix4x4( float m00, float m01, float m02, float m03,
+ float m10, float m11, float m12, float m13,
+ float m20, float m21, float m22, float m23,
+ float m30, float m31, float m32, float m33)
+ {
+ m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03;
+ m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13;
+ m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23;
+ m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33;
+ }
+ //! Copy constructor
+ inline_ Matrix4x4(const Matrix4x4& mat) { CopyMemory(m, &mat.m, 16*sizeof(float)); }
+ //! Destructor.
+ inline_ ~Matrix4x4() {}
+
+ //! Assign values (rotation only)
+ inline_ Matrix4x4& Set( float m00, float m01, float m02,
+ float m10, float m11, float m12,
+ float m20, float m21, float m22)
+ {
+ m[0][0] = m00; m[0][1] = m01; m[0][2] = m02;
+ m[1][0] = m10; m[1][1] = m11; m[1][2] = m12;
+ m[2][0] = m20; m[2][1] = m21; m[2][2] = m22;
+ return *this;
+ }
+ //! Assign values
+ inline_ Matrix4x4& Set( float m00, float m01, float m02, float m03,
+ float m10, float m11, float m12, float m13,
+ float m20, float m21, float m22, float m23,
+ float m30, float m31, float m32, float m33)
+ {
+ m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03;
+ m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13;
+ m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23;
+ m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33;
+ return *this;
+ }
+
+ //! Copy from a Matrix4x4
+ inline_ void Copy(const Matrix4x4& source) { CopyMemory(m, source.m, 16*sizeof(float)); }
+
+ // Row-column access
+ //! Returns a row.
+ inline_ void GetRow(const udword r, HPoint& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; p.w=m[r][3]; }
+ //! Returns a row.
+ inline_ void GetRow(const udword r, IcePoint& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; }
+ //! Returns a row.
+ inline_ const HPoint& GetRow(const udword r) const { return *(const HPoint*)&m[r][0]; }
+ //! Returns a row.
+ inline_ HPoint& GetRow(const udword r) { return *(HPoint*)&m[r][0]; }
+ //! Sets a row.
+ inline_ void SetRow(const udword r, const HPoint& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]=p.w; }
+ //! Sets a row.
+ inline_ void SetRow(const udword r, const IcePoint& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]= (r!=3) ? 0.0f : 1.0f; }
+ //! Returns a column.
+ inline_ void GetCol(const udword c, HPoint& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; p.w=m[3][c]; }
+ //! Returns a column.
+ inline_ void GetCol(const udword c, IcePoint& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; }
+ //! Sets a column.
+ inline_ void SetCol(const udword c, const HPoint& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]=p.w; }
+ //! Sets a column.
+ inline_ void SetCol(const udword c, const IcePoint& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]= (c!=3) ? 0.0f : 1.0f; }
+
+ // Translation
+ //! Returns the translation part of the matrix.
+ inline_ const HPoint& GetTrans() const { return GetRow(3); }
+ //! Gets the translation part of the matrix
+ inline_ void GetTrans(IcePoint& p) const { p.x=m[3][0]; p.y=m[3][1]; p.z=m[3][2]; }
+ //! Sets the translation part of the matrix, from a Point.
+ inline_ void SetTrans(const IcePoint& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; }
+ //! Sets the translation part of the matrix, from a HPoint.
+ inline_ void SetTrans(const HPoint& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; m[3][3]=p.w; }
+ //! Sets the translation part of the matrix, from floats.
+ inline_ void SetTrans(float tx, float ty, float tz) { m[3][0]=tx; m[3][1]=ty; m[3][2]=tz; }
+
+ // Scale
+ //! Sets the scale from a Point. The point is put on the diagonal.
+ inline_ void SetScale(const IcePoint& p) { m[0][0]=p.x; m[1][1]=p.y; m[2][2]=p.z; }
+ //! Sets the scale from floats. Values are put on the diagonal.
+ inline_ void SetScale(float sx, float sy, float sz) { m[0][0]=sx; m[1][1]=sy; m[2][2]=sz; }
+ //! Scales from a Point. Each row is multiplied by a component.
+ void Scale(const IcePoint& p)
+ {
+ m[0][0] *= p.x; m[1][0] *= p.y; m[2][0] *= p.z;
+ m[0][1] *= p.x; m[1][1] *= p.y; m[2][1] *= p.z;
+ m[0][2] *= p.x; m[1][2] *= p.y; m[2][2] *= p.z;
+ }
+ //! Scales from floats. Each row is multiplied by a value.
+ void Scale(float sx, float sy, float sz)
+ {
+ m[0][0] *= sx; m[1][0] *= sy; m[2][0] *= sz;
+ m[0][1] *= sx; m[1][1] *= sy; m[2][1] *= sz;
+ m[0][2] *= sx; m[1][2] *= sy; m[2][2] *= sz;
+ }
+/*
+ //! Returns a row.
+ inline_ HPoint GetRow(const udword row) const { return mRow[row]; }
+ //! Sets a row.
+ inline_ Matrix4x4& SetRow(const udword row, const HPoint& p) { mRow[row] = p; return *this; }
+ //! Sets a row.
+ Matrix4x4& SetRow(const udword row, const Point& p)
+ {
+ m[row][0] = p.x;
+ m[row][1] = p.y;
+ m[row][2] = p.z;
+ m[row][3] = (row != 3) ? 0.0f : 1.0f;
+ return *this;
+ }
+ //! Returns a column.
+ HPoint GetCol(const udword col) const
+ {
+ HPoint Res;
+ Res.x = m[0][col];
+ Res.y = m[1][col];
+ Res.z = m[2][col];
+ Res.w = m[3][col];
+ return Res;
+ }
+ //! Sets a column.
+ Matrix4x4& SetCol(const udword col, const HPoint& p)
+ {
+ m[0][col] = p.x;
+ m[1][col] = p.y;
+ m[2][col] = p.z;
+ m[3][col] = p.w;
+ return *this;
+ }
+ //! Sets a column.
+ Matrix4x4& SetCol(const udword col, const Point& p)
+ {
+ m[0][col] = p.x;
+ m[1][col] = p.y;
+ m[2][col] = p.z;
+ m[3][col] = (col != 3) ? 0.0f : 1.0f;
+ return *this;
+ }
+*/
+ //! Computes the trace. The trace is the sum of the 4 diagonal components.
+ inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2] + m[3][3]; }
+ //! Computes the trace of the upper 3x3 matrix.
+ inline_ float Trace3x3() const { return m[0][0] + m[1][1] + m[2][2]; }
+ //! Clears the matrix.
+ inline_ void Zero() { ZeroMemory(&m, sizeof(m)); }
+ //! Sets the identity matrix.
+ inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f; }
+ //! Checks for identity
+ inline_ bool IsIdentity() const
+ {
+ if(IR(m[0][0])!=IEEE_1_0) return false;
+ if(IR(m[0][1])!=0) return false;
+ if(IR(m[0][2])!=0) return false;
+ if(IR(m[0][3])!=0) return false;
+
+ if(IR(m[1][0])!=0) return false;
+ if(IR(m[1][1])!=IEEE_1_0) return false;
+ if(IR(m[1][2])!=0) return false;
+ if(IR(m[1][3])!=0) return false;
+
+ if(IR(m[2][0])!=0) return false;
+ if(IR(m[2][1])!=0) return false;
+ if(IR(m[2][2])!=IEEE_1_0) return false;
+ if(IR(m[2][3])!=0) return false;
+
+ if(IR(m[3][0])!=0) return false;
+ if(IR(m[3][1])!=0) return false;
+ if(IR(m[3][2])!=0) return false;
+ if(IR(m[3][3])!=IEEE_1_0) return false;
+ return true;
+ }
+
+ //! Checks matrix validity
+ inline_ BOOL IsValid() const
+ {
+ for(udword j=0;j<4;j++)
+ {
+ for(udword i=0;i<4;i++)
+ {
+ if(!IsValidFloat(m[j][i])) return FALSE;
+ }
+ }
+ return TRUE;
+ }
+
+ //! Sets a rotation matrix around the X axis.
+ void RotX(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[1][1] = m[2][2] = Cos; m[2][1] = -Sin; m[1][2] = Sin; }
+ //! Sets a rotation matrix around the Y axis.
+ void RotY(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[2][2] = Cos; m[2][0] = Sin; m[0][2] = -Sin; }
+ //! Sets a rotation matrix around the Z axis.
+ void RotZ(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[1][1] = Cos; m[1][0] = -Sin; m[0][1] = Sin; }
+
+ //! Makes a rotation matrix about an arbitrary axis
+ Matrix4x4& Rot(float angle, IcePoint& p1, IcePoint& p2);
+
+ //! Transposes the matrix.
+ void Transpose()
+ {
+ IR(m[1][0]) ^= IR(m[0][1]); IR(m[0][1]) ^= IR(m[1][0]); IR(m[1][0]) ^= IR(m[0][1]);
+ IR(m[2][0]) ^= IR(m[0][2]); IR(m[0][2]) ^= IR(m[2][0]); IR(m[2][0]) ^= IR(m[0][2]);
+ IR(m[3][0]) ^= IR(m[0][3]); IR(m[0][3]) ^= IR(m[3][0]); IR(m[3][0]) ^= IR(m[0][3]);
+ IR(m[1][2]) ^= IR(m[2][1]); IR(m[2][1]) ^= IR(m[1][2]); IR(m[1][2]) ^= IR(m[2][1]);
+ IR(m[1][3]) ^= IR(m[3][1]); IR(m[3][1]) ^= IR(m[1][3]); IR(m[1][3]) ^= IR(m[3][1]);
+ IR(m[2][3]) ^= IR(m[3][2]); IR(m[3][2]) ^= IR(m[2][3]); IR(m[2][3]) ^= IR(m[3][2]);
+ }
+
+ //! Computes a cofactor. Used for matrix inversion.
+ float CoFactor(udword row, udword col) const;
+ //! Computes the determinant of the matrix.
+ float Determinant() const;
+ //! Inverts the matrix. Determinant must be different from zero, else matrix can't be inverted.
+ Matrix4x4& Invert();
+// Matrix& ComputeAxisMatrix(Point& axis, float angle);
+
+ // Cast operators
+ //! Casts a Matrix4x4 to a Matrix3x3.
+ inline_ operator Matrix3x3() const
+ {
+ return Matrix3x3(
+ m[0][0], m[0][1], m[0][2],
+ m[1][0], m[1][1], m[1][2],
+ m[2][0], m[2][1], m[2][2]);
+ }
+ //! Casts a Matrix4x4 to a Quat.
+ operator Quat() const;
+ //! Casts a Matrix4x4 to a PR.
+ operator PR() const;
+
+ // Arithmetic operators
+ //! Operator for Matrix4x4 Plus = Matrix4x4 + Matrix4x4;
+ inline_ Matrix4x4 operator+(const Matrix4x4& mat) const
+ {
+ return Matrix4x4(
+ m[0][0]+mat.m[0][0], m[0][1]+mat.m[0][1], m[0][2]+mat.m[0][2], m[0][3]+mat.m[0][3],
+ m[1][0]+mat.m[1][0], m[1][1]+mat.m[1][1], m[1][2]+mat.m[1][2], m[1][3]+mat.m[1][3],
+ m[2][0]+mat.m[2][0], m[2][1]+mat.m[2][1], m[2][2]+mat.m[2][2], m[2][3]+mat.m[2][3],
+ m[3][0]+mat.m[3][0], m[3][1]+mat.m[3][1], m[3][2]+mat.m[3][2], m[3][3]+mat.m[3][3]);
+ }
+
+ //! Operator for Matrix4x4 Minus = Matrix4x4 - Matrix4x4;
+ inline_ Matrix4x4 operator-(const Matrix4x4& mat) const
+ {
+ return Matrix4x4(
+ m[0][0]-mat.m[0][0], m[0][1]-mat.m[0][1], m[0][2]-mat.m[0][2], m[0][3]-mat.m[0][3],
+ m[1][0]-mat.m[1][0], m[1][1]-mat.m[1][1], m[1][2]-mat.m[1][2], m[1][3]-mat.m[1][3],
+ m[2][0]-mat.m[2][0], m[2][1]-mat.m[2][1], m[2][2]-mat.m[2][2], m[2][3]-mat.m[2][3],
+ m[3][0]-mat.m[3][0], m[3][1]-mat.m[3][1], m[3][2]-mat.m[3][2], m[3][3]-mat.m[3][3]);
+ }
+
+ //! Operator for Matrix4x4 Mul = Matrix4x4 * Matrix4x4;
+ inline_ Matrix4x4 operator*(const Matrix4x4& mat) const
+ {
+ return Matrix4x4(
+ m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0] + m[0][3]*mat.m[3][0],
+ m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1] + m[0][3]*mat.m[3][1],
+ m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2] + m[0][3]*mat.m[3][2],
+ m[0][0]*mat.m[0][3] + m[0][1]*mat.m[1][3] + m[0][2]*mat.m[2][3] + m[0][3]*mat.m[3][3],
+
+ m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0] + m[1][3]*mat.m[3][0],
+ m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1] + m[1][3]*mat.m[3][1],
+ m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2] + m[1][3]*mat.m[3][2],
+ m[1][0]*mat.m[0][3] + m[1][1]*mat.m[1][3] + m[1][2]*mat.m[2][3] + m[1][3]*mat.m[3][3],
+
+ m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0] + m[2][3]*mat.m[3][0],
+ m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1] + m[2][3]*mat.m[3][1],
+ m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2] + m[2][3]*mat.m[3][2],
+ m[2][0]*mat.m[0][3] + m[2][1]*mat.m[1][3] + m[2][2]*mat.m[2][3] + m[2][3]*mat.m[3][3],
+
+ m[3][0]*mat.m[0][0] + m[3][1]*mat.m[1][0] + m[3][2]*mat.m[2][0] + m[3][3]*mat.m[3][0],
+ m[3][0]*mat.m[0][1] + m[3][1]*mat.m[1][1] + m[3][2]*mat.m[2][1] + m[3][3]*mat.m[3][1],
+ m[3][0]*mat.m[0][2] + m[3][1]*mat.m[1][2] + m[3][2]*mat.m[2][2] + m[3][3]*mat.m[3][2],
+ m[3][0]*mat.m[0][3] + m[3][1]*mat.m[1][3] + m[3][2]*mat.m[2][3] + m[3][3]*mat.m[3][3]);
+ }
+
+ //! Operator for HPoint Mul = Matrix4x4 * HPoint;
+ inline_ HPoint operator*(const HPoint& v) const { return HPoint(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v, GetRow(3)|v); }
+
+ //! Operator for Point Mul = Matrix4x4 * Point;
+ inline_ IcePoint operator*(const IcePoint& v) const
+ {
+ return IcePoint( m[0][0]*v.x + m[0][1]*v.y + m[0][2]*v.z + m[0][3],
+ m[1][0]*v.x + m[1][1]*v.y + m[1][2]*v.z + m[1][3],
+ m[2][0]*v.x + m[2][1]*v.y + m[2][2]*v.z + m[2][3] );
+ }
+
+ //! Operator for Matrix4x4 Scale = Matrix4x4 * float;
+ inline_ Matrix4x4 operator*(float s) const
+ {
+ return Matrix4x4(
+ m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s,
+ m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s,
+ m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s,
+ m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s);
+ }
+
+ //! Operator for Matrix4x4 Scale = float * Matrix4x4;
+ inline_ friend Matrix4x4 operator*(float s, const Matrix4x4& mat)
+ {
+ return Matrix4x4(
+ s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2], s*mat.m[0][3],
+ s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2], s*mat.m[1][3],
+ s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2], s*mat.m[2][3],
+ s*mat.m[3][0], s*mat.m[3][1], s*mat.m[3][2], s*mat.m[3][3]);
+ }
+
+ //! Operator for Matrix4x4 Div = Matrix4x4 / float;
+ inline_ Matrix4x4 operator/(float s) const
+ {
+ if(s) s = 1.0f / s;
+
+ return Matrix4x4(
+ m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s,
+ m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s,
+ m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s,
+ m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s);
+ }
+
+ //! Operator for Matrix4x4 Div = float / Matrix4x4;
+ inline_ friend Matrix4x4 operator/(float s, const Matrix4x4& mat)
+ {
+ return Matrix4x4(
+ s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2], s/mat.m[0][3],
+ s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2], s/mat.m[1][3],
+ s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2], s/mat.m[2][3],
+ s/mat.m[3][0], s/mat.m[3][1], s/mat.m[3][2], s/mat.m[3][3]);
+ }
+
+ //! Operator for Matrix4x4 += Matrix4x4;
+ inline_ Matrix4x4& operator+=(const Matrix4x4& mat)
+ {
+ m[0][0]+=mat.m[0][0]; m[0][1]+=mat.m[0][1]; m[0][2]+=mat.m[0][2]; m[0][3]+=mat.m[0][3];
+ m[1][0]+=mat.m[1][0]; m[1][1]+=mat.m[1][1]; m[1][2]+=mat.m[1][2]; m[1][3]+=mat.m[1][3];
+ m[2][0]+=mat.m[2][0]; m[2][1]+=mat.m[2][1]; m[2][2]+=mat.m[2][2]; m[2][3]+=mat.m[2][3];
+ m[3][0]+=mat.m[3][0]; m[3][1]+=mat.m[3][1]; m[3][2]+=mat.m[3][2]; m[3][3]+=mat.m[3][3];
+ return *this;
+ }
+
+ //! Operator for Matrix4x4 -= Matrix4x4;
+ inline_ Matrix4x4& operator-=(const Matrix4x4& mat)
+ {
+ m[0][0]-=mat.m[0][0]; m[0][1]-=mat.m[0][1]; m[0][2]-=mat.m[0][2]; m[0][3]-=mat.m[0][3];
+ m[1][0]-=mat.m[1][0]; m[1][1]-=mat.m[1][1]; m[1][2]-=mat.m[1][2]; m[1][3]-=mat.m[1][3];
+ m[2][0]-=mat.m[2][0]; m[2][1]-=mat.m[2][1]; m[2][2]-=mat.m[2][2]; m[2][3]-=mat.m[2][3];
+ m[3][0]-=mat.m[3][0]; m[3][1]-=mat.m[3][1]; m[3][2]-=mat.m[3][2]; m[3][3]-=mat.m[3][3];
+ return *this;
+ }
+
+ //! Operator for Matrix4x4 *= Matrix4x4;
+ Matrix4x4& operator*=(const Matrix4x4& mat)
+ {
+ HPoint TempRow;
+
+ GetRow(0, TempRow);
+ m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
+ m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
+ m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
+ m[0][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
+
+ GetRow(1, TempRow);
+ m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
+ m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
+ m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
+ m[1][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
+
+ GetRow(2, TempRow);
+ m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
+ m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
+ m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
+ m[2][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
+
+ GetRow(3, TempRow);
+ m[3][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
+ m[3][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
+ m[3][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
+ m[3][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
+
+ return *this;
+ }
+
+ //! Operator for Matrix4x4 *= float;
+ inline_ Matrix4x4& operator*=(float s)
+ {
+ m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s;
+ m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s;
+ m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s;
+ m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s;
+ return *this;
+ }
+
+ //! Operator for Matrix4x4 /= float;
+ inline_ Matrix4x4& operator/=(float s)
+ {
+ if(s) s = 1.0f / s;
+ m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s;
+ m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s;
+ m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s;
+ m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s;
+ return *this;
+ }
+
+ inline_ const HPoint& operator[](int row) const { return *(const HPoint*)&m[row][0]; }
+ inline_ HPoint& operator[](int row) { return *(HPoint*)&m[row][0]; }
+
+ public:
+
+ float m[4][4];
+ };
+
+ //! Quickly rotates & translates a vector, using the 4x3 part of a 4x4 matrix
+ inline_ void TransformPoint4x3(IcePoint& dest, const IcePoint& source, const Matrix4x4& rot)
+ {
+ dest.x = rot.m[3][0] + source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
+ dest.y = rot.m[3][1] + source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
+ dest.z = rot.m[3][2] + source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
+ }
+
+ //! Quickly rotates a vector, using the 3x3 part of a 4x4 matrix
+ inline_ void TransformPoint3x3(IcePoint& dest, const IcePoint& source, const Matrix4x4& rot)
+ {
+ dest.x = source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
+ dest.y = source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
+ dest.z = source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
+ }
+
+ ICEMATHS_API void InvertPRMatrix(Matrix4x4& dest, const Matrix4x4& src);
+
+#endif // __ICEMATRIX4X4_H__
+