diff options
Diffstat (limited to 'Opcode/Ice/IceMatrix4x4.h')
-rw-r--r-- | Opcode/Ice/IceMatrix4x4.h | 910 |
1 files changed, 455 insertions, 455 deletions
diff --git a/Opcode/Ice/IceMatrix4x4.h b/Opcode/Ice/IceMatrix4x4.h index 0b08a4a..82ebc05 100644 --- a/Opcode/Ice/IceMatrix4x4.h +++ b/Opcode/Ice/IceMatrix4x4.h @@ -1,455 +1,455 @@ -///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-/**
- * Contains code for 4x4 matrices.
- * \file IceMatrix4x4.h
- * \author Pierre Terdiman
- * \date April, 4, 2000
- */
-///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-
-///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-// Include Guard
-#ifndef __ICEMATRIX4X4_H__
-#define __ICEMATRIX4X4_H__
-
- // Forward declarations
- class PRS;
- class PR;
-
- #define MATRIX4X4_EPSILON (1.0e-7f)
-
- class ICEMATHS_API Matrix4x4
- {
-// void LUBackwardSubstitution( sdword *indx, float* b );
-// void LUDecomposition( sdword* indx, float* d );
-
- public:
- //! Empty constructor.
- inline_ Matrix4x4() {}
- //! Constructor from 16 values
- inline_ Matrix4x4( float m00, float m01, float m02, float m03,
- float m10, float m11, float m12, float m13,
- float m20, float m21, float m22, float m23,
- float m30, float m31, float m32, float m33)
- {
- m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03;
- m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13;
- m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23;
- m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33;
- }
- //! Copy constructor
- inline_ Matrix4x4(const Matrix4x4& mat) { CopyMemory(m, &mat.m, 16*sizeof(float)); }
- //! Destructor.
- inline_ ~Matrix4x4() {}
-
- //! Assign values (rotation only)
- inline_ Matrix4x4& Set( float m00, float m01, float m02,
- float m10, float m11, float m12,
- float m20, float m21, float m22)
- {
- m[0][0] = m00; m[0][1] = m01; m[0][2] = m02;
- m[1][0] = m10; m[1][1] = m11; m[1][2] = m12;
- m[2][0] = m20; m[2][1] = m21; m[2][2] = m22;
- return *this;
- }
- //! Assign values
- inline_ Matrix4x4& Set( float m00, float m01, float m02, float m03,
- float m10, float m11, float m12, float m13,
- float m20, float m21, float m22, float m23,
- float m30, float m31, float m32, float m33)
- {
- m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03;
- m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13;
- m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23;
- m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33;
- return *this;
- }
-
- //! Copy from a Matrix4x4
- inline_ void Copy(const Matrix4x4& source) { CopyMemory(m, source.m, 16*sizeof(float)); }
-
- // Row-column access
- //! Returns a row.
- inline_ void GetRow(const udword r, HPoint& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; p.w=m[r][3]; }
- //! Returns a row.
- inline_ void GetRow(const udword r, IcePoint& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; }
- //! Returns a row.
- inline_ const HPoint& GetRow(const udword r) const { return *(const HPoint*)&m[r][0]; }
- //! Returns a row.
- inline_ HPoint& GetRow(const udword r) { return *(HPoint*)&m[r][0]; }
- //! Sets a row.
- inline_ void SetRow(const udword r, const HPoint& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]=p.w; }
- //! Sets a row.
- inline_ void SetRow(const udword r, const IcePoint& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]= (r!=3) ? 0.0f : 1.0f; }
- //! Returns a column.
- inline_ void GetCol(const udword c, HPoint& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; p.w=m[3][c]; }
- //! Returns a column.
- inline_ void GetCol(const udword c, IcePoint& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; }
- //! Sets a column.
- inline_ void SetCol(const udword c, const HPoint& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]=p.w; }
- //! Sets a column.
- inline_ void SetCol(const udword c, const IcePoint& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]= (c!=3) ? 0.0f : 1.0f; }
-
- // Translation
- //! Returns the translation part of the matrix.
- inline_ const HPoint& GetTrans() const { return GetRow(3); }
- //! Gets the translation part of the matrix
- inline_ void GetTrans(IcePoint& p) const { p.x=m[3][0]; p.y=m[3][1]; p.z=m[3][2]; }
- //! Sets the translation part of the matrix, from a Point.
- inline_ void SetTrans(const IcePoint& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; }
- //! Sets the translation part of the matrix, from a HPoint.
- inline_ void SetTrans(const HPoint& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; m[3][3]=p.w; }
- //! Sets the translation part of the matrix, from floats.
- inline_ void SetTrans(float tx, float ty, float tz) { m[3][0]=tx; m[3][1]=ty; m[3][2]=tz; }
-
- // Scale
- //! Sets the scale from a Point. The point is put on the diagonal.
- inline_ void SetScale(const IcePoint& p) { m[0][0]=p.x; m[1][1]=p.y; m[2][2]=p.z; }
- //! Sets the scale from floats. Values are put on the diagonal.
- inline_ void SetScale(float sx, float sy, float sz) { m[0][0]=sx; m[1][1]=sy; m[2][2]=sz; }
- //! Scales from a Point. Each row is multiplied by a component.
- void Scale(const IcePoint& p)
- {
- m[0][0] *= p.x; m[1][0] *= p.y; m[2][0] *= p.z;
- m[0][1] *= p.x; m[1][1] *= p.y; m[2][1] *= p.z;
- m[0][2] *= p.x; m[1][2] *= p.y; m[2][2] *= p.z;
- }
- //! Scales from floats. Each row is multiplied by a value.
- void Scale(float sx, float sy, float sz)
- {
- m[0][0] *= sx; m[1][0] *= sy; m[2][0] *= sz;
- m[0][1] *= sx; m[1][1] *= sy; m[2][1] *= sz;
- m[0][2] *= sx; m[1][2] *= sy; m[2][2] *= sz;
- }
-/*
- //! Returns a row.
- inline_ HPoint GetRow(const udword row) const { return mRow[row]; }
- //! Sets a row.
- inline_ Matrix4x4& SetRow(const udword row, const HPoint& p) { mRow[row] = p; return *this; }
- //! Sets a row.
- Matrix4x4& SetRow(const udword row, const Point& p)
- {
- m[row][0] = p.x;
- m[row][1] = p.y;
- m[row][2] = p.z;
- m[row][3] = (row != 3) ? 0.0f : 1.0f;
- return *this;
- }
- //! Returns a column.
- HPoint GetCol(const udword col) const
- {
- HPoint Res;
- Res.x = m[0][col];
- Res.y = m[1][col];
- Res.z = m[2][col];
- Res.w = m[3][col];
- return Res;
- }
- //! Sets a column.
- Matrix4x4& SetCol(const udword col, const HPoint& p)
- {
- m[0][col] = p.x;
- m[1][col] = p.y;
- m[2][col] = p.z;
- m[3][col] = p.w;
- return *this;
- }
- //! Sets a column.
- Matrix4x4& SetCol(const udword col, const Point& p)
- {
- m[0][col] = p.x;
- m[1][col] = p.y;
- m[2][col] = p.z;
- m[3][col] = (col != 3) ? 0.0f : 1.0f;
- return *this;
- }
-*/
- //! Computes the trace. The trace is the sum of the 4 diagonal components.
- inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2] + m[3][3]; }
- //! Computes the trace of the upper 3x3 matrix.
- inline_ float Trace3x3() const { return m[0][0] + m[1][1] + m[2][2]; }
- //! Clears the matrix.
- inline_ void Zero() { ZeroMemory(&m, sizeof(m)); }
- //! Sets the identity matrix.
- inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f; }
- //! Checks for identity
- inline_ bool IsIdentity() const
- {
- if(IR(m[0][0])!=IEEE_1_0) return false;
- if(IR(m[0][1])!=0) return false;
- if(IR(m[0][2])!=0) return false;
- if(IR(m[0][3])!=0) return false;
-
- if(IR(m[1][0])!=0) return false;
- if(IR(m[1][1])!=IEEE_1_0) return false;
- if(IR(m[1][2])!=0) return false;
- if(IR(m[1][3])!=0) return false;
-
- if(IR(m[2][0])!=0) return false;
- if(IR(m[2][1])!=0) return false;
- if(IR(m[2][2])!=IEEE_1_0) return false;
- if(IR(m[2][3])!=0) return false;
-
- if(IR(m[3][0])!=0) return false;
- if(IR(m[3][1])!=0) return false;
- if(IR(m[3][2])!=0) return false;
- if(IR(m[3][3])!=IEEE_1_0) return false;
- return true;
- }
-
- //! Checks matrix validity
- inline_ BOOL IsValid() const
- {
- for(udword j=0;j<4;j++)
- {
- for(udword i=0;i<4;i++)
- {
- if(!IsValidFloat(m[j][i])) return FALSE;
- }
- }
- return TRUE;
- }
-
- //! Sets a rotation matrix around the X axis.
- void RotX(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[1][1] = m[2][2] = Cos; m[2][1] = -Sin; m[1][2] = Sin; }
- //! Sets a rotation matrix around the Y axis.
- void RotY(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[2][2] = Cos; m[2][0] = Sin; m[0][2] = -Sin; }
- //! Sets a rotation matrix around the Z axis.
- void RotZ(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[1][1] = Cos; m[1][0] = -Sin; m[0][1] = Sin; }
-
- //! Makes a rotation matrix about an arbitrary axis
- Matrix4x4& Rot(float angle, IcePoint& p1, IcePoint& p2);
-
- //! Transposes the matrix.
- void Transpose()
- {
- IR(m[1][0]) ^= IR(m[0][1]); IR(m[0][1]) ^= IR(m[1][0]); IR(m[1][0]) ^= IR(m[0][1]);
- IR(m[2][0]) ^= IR(m[0][2]); IR(m[0][2]) ^= IR(m[2][0]); IR(m[2][0]) ^= IR(m[0][2]);
- IR(m[3][0]) ^= IR(m[0][3]); IR(m[0][3]) ^= IR(m[3][0]); IR(m[3][0]) ^= IR(m[0][3]);
- IR(m[1][2]) ^= IR(m[2][1]); IR(m[2][1]) ^= IR(m[1][2]); IR(m[1][2]) ^= IR(m[2][1]);
- IR(m[1][3]) ^= IR(m[3][1]); IR(m[3][1]) ^= IR(m[1][3]); IR(m[1][3]) ^= IR(m[3][1]);
- IR(m[2][3]) ^= IR(m[3][2]); IR(m[3][2]) ^= IR(m[2][3]); IR(m[2][3]) ^= IR(m[3][2]);
- }
-
- //! Computes a cofactor. Used for matrix inversion.
- float CoFactor(udword row, udword col) const;
- //! Computes the determinant of the matrix.
- float Determinant() const;
- //! Inverts the matrix. Determinant must be different from zero, else matrix can't be inverted.
- Matrix4x4& Invert();
-// Matrix& ComputeAxisMatrix(Point& axis, float angle);
-
- // Cast operators
- //! Casts a Matrix4x4 to a Matrix3x3.
- inline_ operator Matrix3x3() const
- {
- return Matrix3x3(
- m[0][0], m[0][1], m[0][2],
- m[1][0], m[1][1], m[1][2],
- m[2][0], m[2][1], m[2][2]);
- }
- //! Casts a Matrix4x4 to a Quat.
- operator Quat() const;
- //! Casts a Matrix4x4 to a PR.
- operator PR() const;
-
- // Arithmetic operators
- //! Operator for Matrix4x4 Plus = Matrix4x4 + Matrix4x4;
- inline_ Matrix4x4 operator+(const Matrix4x4& mat) const
- {
- return Matrix4x4(
- m[0][0]+mat.m[0][0], m[0][1]+mat.m[0][1], m[0][2]+mat.m[0][2], m[0][3]+mat.m[0][3],
- m[1][0]+mat.m[1][0], m[1][1]+mat.m[1][1], m[1][2]+mat.m[1][2], m[1][3]+mat.m[1][3],
- m[2][0]+mat.m[2][0], m[2][1]+mat.m[2][1], m[2][2]+mat.m[2][2], m[2][3]+mat.m[2][3],
- m[3][0]+mat.m[3][0], m[3][1]+mat.m[3][1], m[3][2]+mat.m[3][2], m[3][3]+mat.m[3][3]);
- }
-
- //! Operator for Matrix4x4 Minus = Matrix4x4 - Matrix4x4;
- inline_ Matrix4x4 operator-(const Matrix4x4& mat) const
- {
- return Matrix4x4(
- m[0][0]-mat.m[0][0], m[0][1]-mat.m[0][1], m[0][2]-mat.m[0][2], m[0][3]-mat.m[0][3],
- m[1][0]-mat.m[1][0], m[1][1]-mat.m[1][1], m[1][2]-mat.m[1][2], m[1][3]-mat.m[1][3],
- m[2][0]-mat.m[2][0], m[2][1]-mat.m[2][1], m[2][2]-mat.m[2][2], m[2][3]-mat.m[2][3],
- m[3][0]-mat.m[3][0], m[3][1]-mat.m[3][1], m[3][2]-mat.m[3][2], m[3][3]-mat.m[3][3]);
- }
-
- //! Operator for Matrix4x4 Mul = Matrix4x4 * Matrix4x4;
- inline_ Matrix4x4 operator*(const Matrix4x4& mat) const
- {
- return Matrix4x4(
- m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0] + m[0][3]*mat.m[3][0],
- m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1] + m[0][3]*mat.m[3][1],
- m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2] + m[0][3]*mat.m[3][2],
- m[0][0]*mat.m[0][3] + m[0][1]*mat.m[1][3] + m[0][2]*mat.m[2][3] + m[0][3]*mat.m[3][3],
-
- m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0] + m[1][3]*mat.m[3][0],
- m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1] + m[1][3]*mat.m[3][1],
- m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2] + m[1][3]*mat.m[3][2],
- m[1][0]*mat.m[0][3] + m[1][1]*mat.m[1][3] + m[1][2]*mat.m[2][3] + m[1][3]*mat.m[3][3],
-
- m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0] + m[2][3]*mat.m[3][0],
- m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1] + m[2][3]*mat.m[3][1],
- m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2] + m[2][3]*mat.m[3][2],
- m[2][0]*mat.m[0][3] + m[2][1]*mat.m[1][3] + m[2][2]*mat.m[2][3] + m[2][3]*mat.m[3][3],
-
- m[3][0]*mat.m[0][0] + m[3][1]*mat.m[1][0] + m[3][2]*mat.m[2][0] + m[3][3]*mat.m[3][0],
- m[3][0]*mat.m[0][1] + m[3][1]*mat.m[1][1] + m[3][2]*mat.m[2][1] + m[3][3]*mat.m[3][1],
- m[3][0]*mat.m[0][2] + m[3][1]*mat.m[1][2] + m[3][2]*mat.m[2][2] + m[3][3]*mat.m[3][2],
- m[3][0]*mat.m[0][3] + m[3][1]*mat.m[1][3] + m[3][2]*mat.m[2][3] + m[3][3]*mat.m[3][3]);
- }
-
- //! Operator for HPoint Mul = Matrix4x4 * HPoint;
- inline_ HPoint operator*(const HPoint& v) const { return HPoint(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v, GetRow(3)|v); }
-
- //! Operator for Point Mul = Matrix4x4 * Point;
- inline_ IcePoint operator*(const IcePoint& v) const
- {
- return IcePoint( m[0][0]*v.x + m[0][1]*v.y + m[0][2]*v.z + m[0][3],
- m[1][0]*v.x + m[1][1]*v.y + m[1][2]*v.z + m[1][3],
- m[2][0]*v.x + m[2][1]*v.y + m[2][2]*v.z + m[2][3] );
- }
-
- //! Operator for Matrix4x4 Scale = Matrix4x4 * float;
- inline_ Matrix4x4 operator*(float s) const
- {
- return Matrix4x4(
- m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s,
- m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s,
- m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s,
- m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s);
- }
-
- //! Operator for Matrix4x4 Scale = float * Matrix4x4;
- inline_ friend Matrix4x4 operator*(float s, const Matrix4x4& mat)
- {
- return Matrix4x4(
- s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2], s*mat.m[0][3],
- s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2], s*mat.m[1][3],
- s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2], s*mat.m[2][3],
- s*mat.m[3][0], s*mat.m[3][1], s*mat.m[3][2], s*mat.m[3][3]);
- }
-
- //! Operator for Matrix4x4 Div = Matrix4x4 / float;
- inline_ Matrix4x4 operator/(float s) const
- {
- if(s) s = 1.0f / s;
-
- return Matrix4x4(
- m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s,
- m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s,
- m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s,
- m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s);
- }
-
- //! Operator for Matrix4x4 Div = float / Matrix4x4;
- inline_ friend Matrix4x4 operator/(float s, const Matrix4x4& mat)
- {
- return Matrix4x4(
- s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2], s/mat.m[0][3],
- s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2], s/mat.m[1][3],
- s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2], s/mat.m[2][3],
- s/mat.m[3][0], s/mat.m[3][1], s/mat.m[3][2], s/mat.m[3][3]);
- }
-
- //! Operator for Matrix4x4 += Matrix4x4;
- inline_ Matrix4x4& operator+=(const Matrix4x4& mat)
- {
- m[0][0]+=mat.m[0][0]; m[0][1]+=mat.m[0][1]; m[0][2]+=mat.m[0][2]; m[0][3]+=mat.m[0][3];
- m[1][0]+=mat.m[1][0]; m[1][1]+=mat.m[1][1]; m[1][2]+=mat.m[1][2]; m[1][3]+=mat.m[1][3];
- m[2][0]+=mat.m[2][0]; m[2][1]+=mat.m[2][1]; m[2][2]+=mat.m[2][2]; m[2][3]+=mat.m[2][3];
- m[3][0]+=mat.m[3][0]; m[3][1]+=mat.m[3][1]; m[3][2]+=mat.m[3][2]; m[3][3]+=mat.m[3][3];
- return *this;
- }
-
- //! Operator for Matrix4x4 -= Matrix4x4;
- inline_ Matrix4x4& operator-=(const Matrix4x4& mat)
- {
- m[0][0]-=mat.m[0][0]; m[0][1]-=mat.m[0][1]; m[0][2]-=mat.m[0][2]; m[0][3]-=mat.m[0][3];
- m[1][0]-=mat.m[1][0]; m[1][1]-=mat.m[1][1]; m[1][2]-=mat.m[1][2]; m[1][3]-=mat.m[1][3];
- m[2][0]-=mat.m[2][0]; m[2][1]-=mat.m[2][1]; m[2][2]-=mat.m[2][2]; m[2][3]-=mat.m[2][3];
- m[3][0]-=mat.m[3][0]; m[3][1]-=mat.m[3][1]; m[3][2]-=mat.m[3][2]; m[3][3]-=mat.m[3][3];
- return *this;
- }
-
- //! Operator for Matrix4x4 *= Matrix4x4;
- Matrix4x4& operator*=(const Matrix4x4& mat)
- {
- HPoint TempRow;
-
- GetRow(0, TempRow);
- m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
- m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
- m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
- m[0][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
-
- GetRow(1, TempRow);
- m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
- m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
- m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
- m[1][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
-
- GetRow(2, TempRow);
- m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
- m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
- m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
- m[2][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
-
- GetRow(3, TempRow);
- m[3][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
- m[3][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
- m[3][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
- m[3][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
-
- return *this;
- }
-
- //! Operator for Matrix4x4 *= float;
- inline_ Matrix4x4& operator*=(float s)
- {
- m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s;
- m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s;
- m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s;
- m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s;
- return *this;
- }
-
- //! Operator for Matrix4x4 /= float;
- inline_ Matrix4x4& operator/=(float s)
- {
- if(s) s = 1.0f / s;
- m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s;
- m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s;
- m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s;
- m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s;
- return *this;
- }
-
- inline_ const HPoint& operator[](int row) const { return *(const HPoint*)&m[row][0]; }
- inline_ HPoint& operator[](int row) { return *(HPoint*)&m[row][0]; }
-
- public:
-
- float m[4][4];
- };
-
- //! Quickly rotates & translates a vector, using the 4x3 part of a 4x4 matrix
- inline_ void TransformPoint4x3(IcePoint& dest, const IcePoint& source, const Matrix4x4& rot)
- {
- dest.x = rot.m[3][0] + source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
- dest.y = rot.m[3][1] + source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
- dest.z = rot.m[3][2] + source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
- }
-
- //! Quickly rotates a vector, using the 3x3 part of a 4x4 matrix
- inline_ void TransformPoint3x3(IcePoint& dest, const IcePoint& source, const Matrix4x4& rot)
- {
- dest.x = source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
- dest.y = source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
- dest.z = source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
- }
-
- ICEMATHS_API void InvertPRMatrix(Matrix4x4& dest, const Matrix4x4& src);
-
-#endif // __ICEMATRIX4X4_H__
-
+/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +/** + * Contains code for 4x4 matrices. + * \file IceMatrix4x4.h + * \author Pierre Terdiman + * \date April, 4, 2000 + */ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Include Guard +#ifndef __ICEMATRIX4X4_H__ +#define __ICEMATRIX4X4_H__ + + // Forward declarations + class PRS; + class PR; + + #define MATRIX4X4_EPSILON (1.0e-7f) + + class ICEMATHS_API Matrix4x4 + { +// void LUBackwardSubstitution( sdword *indx, float* b ); +// void LUDecomposition( sdword* indx, float* d ); + + public: + //! Empty constructor. + inline_ Matrix4x4() {} + //! Constructor from 16 values + inline_ Matrix4x4( float m00, float m01, float m02, float m03, + float m10, float m11, float m12, float m13, + float m20, float m21, float m22, float m23, + float m30, float m31, float m32, float m33) + { + m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03; + m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13; + m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23; + m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33; + } + //! Copy constructor + inline_ Matrix4x4(const Matrix4x4& mat) { CopyMemory(m, &mat.m, 16*sizeof(float)); } + //! Destructor. + inline_ ~Matrix4x4() {} + + //! Assign values (rotation only) + inline_ Matrix4x4& Set( float m00, float m01, float m02, + float m10, float m11, float m12, + float m20, float m21, float m22) + { + m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; + m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; + m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; + return *this; + } + //! Assign values + inline_ Matrix4x4& Set( float m00, float m01, float m02, float m03, + float m10, float m11, float m12, float m13, + float m20, float m21, float m22, float m23, + float m30, float m31, float m32, float m33) + { + m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03; + m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13; + m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23; + m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33; + return *this; + } + + //! Copy from a Matrix4x4 + inline_ void Copy(const Matrix4x4& source) { CopyMemory(m, source.m, 16*sizeof(float)); } + + // Row-column access + //! Returns a row. + inline_ void GetRow(const udword r, HPoint& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; p.w=m[r][3]; } + //! Returns a row. + inline_ void GetRow(const udword r, IcePoint& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; } + //! Returns a row. + inline_ const HPoint& GetRow(const udword r) const { return *(const HPoint*)&m[r][0]; } + //! Returns a row. + inline_ HPoint& GetRow(const udword r) { return *(HPoint*)&m[r][0]; } + //! Sets a row. + inline_ void SetRow(const udword r, const HPoint& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]=p.w; } + //! Sets a row. + inline_ void SetRow(const udword r, const IcePoint& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]= (r!=3) ? 0.0f : 1.0f; } + //! Returns a column. + inline_ void GetCol(const udword c, HPoint& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; p.w=m[3][c]; } + //! Returns a column. + inline_ void GetCol(const udword c, IcePoint& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; } + //! Sets a column. + inline_ void SetCol(const udword c, const HPoint& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]=p.w; } + //! Sets a column. + inline_ void SetCol(const udword c, const IcePoint& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]= (c!=3) ? 0.0f : 1.0f; } + + // Translation + //! Returns the translation part of the matrix. + inline_ const HPoint& GetTrans() const { return GetRow(3); } + //! Gets the translation part of the matrix + inline_ void GetTrans(IcePoint& p) const { p.x=m[3][0]; p.y=m[3][1]; p.z=m[3][2]; } + //! Sets the translation part of the matrix, from a Point. + inline_ void SetTrans(const IcePoint& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; } + //! Sets the translation part of the matrix, from a HPoint. + inline_ void SetTrans(const HPoint& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; m[3][3]=p.w; } + //! Sets the translation part of the matrix, from floats. + inline_ void SetTrans(float tx, float ty, float tz) { m[3][0]=tx; m[3][1]=ty; m[3][2]=tz; } + + // Scale + //! Sets the scale from a Point. The point is put on the diagonal. + inline_ void SetScale(const IcePoint& p) { m[0][0]=p.x; m[1][1]=p.y; m[2][2]=p.z; } + //! Sets the scale from floats. Values are put on the diagonal. + inline_ void SetScale(float sx, float sy, float sz) { m[0][0]=sx; m[1][1]=sy; m[2][2]=sz; } + //! Scales from a Point. Each row is multiplied by a component. + void Scale(const IcePoint& p) + { + m[0][0] *= p.x; m[1][0] *= p.y; m[2][0] *= p.z; + m[0][1] *= p.x; m[1][1] *= p.y; m[2][1] *= p.z; + m[0][2] *= p.x; m[1][2] *= p.y; m[2][2] *= p.z; + } + //! Scales from floats. Each row is multiplied by a value. + void Scale(float sx, float sy, float sz) + { + m[0][0] *= sx; m[1][0] *= sy; m[2][0] *= sz; + m[0][1] *= sx; m[1][1] *= sy; m[2][1] *= sz; + m[0][2] *= sx; m[1][2] *= sy; m[2][2] *= sz; + } +/* + //! Returns a row. + inline_ HPoint GetRow(const udword row) const { return mRow[row]; } + //! Sets a row. + inline_ Matrix4x4& SetRow(const udword row, const HPoint& p) { mRow[row] = p; return *this; } + //! Sets a row. + Matrix4x4& SetRow(const udword row, const Point& p) + { + m[row][0] = p.x; + m[row][1] = p.y; + m[row][2] = p.z; + m[row][3] = (row != 3) ? 0.0f : 1.0f; + return *this; + } + //! Returns a column. + HPoint GetCol(const udword col) const + { + HPoint Res; + Res.x = m[0][col]; + Res.y = m[1][col]; + Res.z = m[2][col]; + Res.w = m[3][col]; + return Res; + } + //! Sets a column. + Matrix4x4& SetCol(const udword col, const HPoint& p) + { + m[0][col] = p.x; + m[1][col] = p.y; + m[2][col] = p.z; + m[3][col] = p.w; + return *this; + } + //! Sets a column. + Matrix4x4& SetCol(const udword col, const Point& p) + { + m[0][col] = p.x; + m[1][col] = p.y; + m[2][col] = p.z; + m[3][col] = (col != 3) ? 0.0f : 1.0f; + return *this; + } +*/ + //! Computes the trace. The trace is the sum of the 4 diagonal components. + inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2] + m[3][3]; } + //! Computes the trace of the upper 3x3 matrix. + inline_ float Trace3x3() const { return m[0][0] + m[1][1] + m[2][2]; } + //! Clears the matrix. + inline_ void Zero() { ZeroMemory(&m, sizeof(m)); } + //! Sets the identity matrix. + inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f; } + //! Checks for identity + inline_ bool IsIdentity() const + { + if(IR(m[0][0])!=IEEE_1_0) return false; + if(IR(m[0][1])!=0) return false; + if(IR(m[0][2])!=0) return false; + if(IR(m[0][3])!=0) return false; + + if(IR(m[1][0])!=0) return false; + if(IR(m[1][1])!=IEEE_1_0) return false; + if(IR(m[1][2])!=0) return false; + if(IR(m[1][3])!=0) return false; + + if(IR(m[2][0])!=0) return false; + if(IR(m[2][1])!=0) return false; + if(IR(m[2][2])!=IEEE_1_0) return false; + if(IR(m[2][3])!=0) return false; + + if(IR(m[3][0])!=0) return false; + if(IR(m[3][1])!=0) return false; + if(IR(m[3][2])!=0) return false; + if(IR(m[3][3])!=IEEE_1_0) return false; + return true; + } + + //! Checks matrix validity + inline_ BOOL IsValid() const + { + for(udword j=0;j<4;j++) + { + for(udword i=0;i<4;i++) + { + if(!IsValidFloat(m[j][i])) return FALSE; + } + } + return TRUE; + } + + //! Sets a rotation matrix around the X axis. + void RotX(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[1][1] = m[2][2] = Cos; m[2][1] = -Sin; m[1][2] = Sin; } + //! Sets a rotation matrix around the Y axis. + void RotY(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[2][2] = Cos; m[2][0] = Sin; m[0][2] = -Sin; } + //! Sets a rotation matrix around the Z axis. + void RotZ(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[1][1] = Cos; m[1][0] = -Sin; m[0][1] = Sin; } + + //! Makes a rotation matrix about an arbitrary axis + Matrix4x4& Rot(float angle, IcePoint& p1, IcePoint& p2); + + //! Transposes the matrix. + void Transpose() + { + IR(m[1][0]) ^= IR(m[0][1]); IR(m[0][1]) ^= IR(m[1][0]); IR(m[1][0]) ^= IR(m[0][1]); + IR(m[2][0]) ^= IR(m[0][2]); IR(m[0][2]) ^= IR(m[2][0]); IR(m[2][0]) ^= IR(m[0][2]); + IR(m[3][0]) ^= IR(m[0][3]); IR(m[0][3]) ^= IR(m[3][0]); IR(m[3][0]) ^= IR(m[0][3]); + IR(m[1][2]) ^= IR(m[2][1]); IR(m[2][1]) ^= IR(m[1][2]); IR(m[1][2]) ^= IR(m[2][1]); + IR(m[1][3]) ^= IR(m[3][1]); IR(m[3][1]) ^= IR(m[1][3]); IR(m[1][3]) ^= IR(m[3][1]); + IR(m[2][3]) ^= IR(m[3][2]); IR(m[3][2]) ^= IR(m[2][3]); IR(m[2][3]) ^= IR(m[3][2]); + } + + //! Computes a cofactor. Used for matrix inversion. + float CoFactor(udword row, udword col) const; + //! Computes the determinant of the matrix. + float Determinant() const; + //! Inverts the matrix. Determinant must be different from zero, else matrix can't be inverted. + Matrix4x4& Invert(); +// Matrix& ComputeAxisMatrix(Point& axis, float angle); + + // Cast operators + //! Casts a Matrix4x4 to a Matrix3x3. + inline_ operator Matrix3x3() const + { + return Matrix3x3( + m[0][0], m[0][1], m[0][2], + m[1][0], m[1][1], m[1][2], + m[2][0], m[2][1], m[2][2]); + } + //! Casts a Matrix4x4 to a Quat. + operator Quat() const; + //! Casts a Matrix4x4 to a PR. + operator PR() const; + + // Arithmetic operators + //! Operator for Matrix4x4 Plus = Matrix4x4 + Matrix4x4; + inline_ Matrix4x4 operator+(const Matrix4x4& mat) const + { + return Matrix4x4( + m[0][0]+mat.m[0][0], m[0][1]+mat.m[0][1], m[0][2]+mat.m[0][2], m[0][3]+mat.m[0][3], + m[1][0]+mat.m[1][0], m[1][1]+mat.m[1][1], m[1][2]+mat.m[1][2], m[1][3]+mat.m[1][3], + m[2][0]+mat.m[2][0], m[2][1]+mat.m[2][1], m[2][2]+mat.m[2][2], m[2][3]+mat.m[2][3], + m[3][0]+mat.m[3][0], m[3][1]+mat.m[3][1], m[3][2]+mat.m[3][2], m[3][3]+mat.m[3][3]); + } + + //! Operator for Matrix4x4 Minus = Matrix4x4 - Matrix4x4; + inline_ Matrix4x4 operator-(const Matrix4x4& mat) const + { + return Matrix4x4( + m[0][0]-mat.m[0][0], m[0][1]-mat.m[0][1], m[0][2]-mat.m[0][2], m[0][3]-mat.m[0][3], + m[1][0]-mat.m[1][0], m[1][1]-mat.m[1][1], m[1][2]-mat.m[1][2], m[1][3]-mat.m[1][3], + m[2][0]-mat.m[2][0], m[2][1]-mat.m[2][1], m[2][2]-mat.m[2][2], m[2][3]-mat.m[2][3], + m[3][0]-mat.m[3][0], m[3][1]-mat.m[3][1], m[3][2]-mat.m[3][2], m[3][3]-mat.m[3][3]); + } + + //! Operator for Matrix4x4 Mul = Matrix4x4 * Matrix4x4; + inline_ Matrix4x4 operator*(const Matrix4x4& mat) const + { + return Matrix4x4( + m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0] + m[0][3]*mat.m[3][0], + m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1] + m[0][3]*mat.m[3][1], + m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2] + m[0][3]*mat.m[3][2], + m[0][0]*mat.m[0][3] + m[0][1]*mat.m[1][3] + m[0][2]*mat.m[2][3] + m[0][3]*mat.m[3][3], + + m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0] + m[1][3]*mat.m[3][0], + m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1] + m[1][3]*mat.m[3][1], + m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2] + m[1][3]*mat.m[3][2], + m[1][0]*mat.m[0][3] + m[1][1]*mat.m[1][3] + m[1][2]*mat.m[2][3] + m[1][3]*mat.m[3][3], + + m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0] + m[2][3]*mat.m[3][0], + m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1] + m[2][3]*mat.m[3][1], + m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2] + m[2][3]*mat.m[3][2], + m[2][0]*mat.m[0][3] + m[2][1]*mat.m[1][3] + m[2][2]*mat.m[2][3] + m[2][3]*mat.m[3][3], + + m[3][0]*mat.m[0][0] + m[3][1]*mat.m[1][0] + m[3][2]*mat.m[2][0] + m[3][3]*mat.m[3][0], + m[3][0]*mat.m[0][1] + m[3][1]*mat.m[1][1] + m[3][2]*mat.m[2][1] + m[3][3]*mat.m[3][1], + m[3][0]*mat.m[0][2] + m[3][1]*mat.m[1][2] + m[3][2]*mat.m[2][2] + m[3][3]*mat.m[3][2], + m[3][0]*mat.m[0][3] + m[3][1]*mat.m[1][3] + m[3][2]*mat.m[2][3] + m[3][3]*mat.m[3][3]); + } + + //! Operator for HPoint Mul = Matrix4x4 * HPoint; + inline_ HPoint operator*(const HPoint& v) const { return HPoint(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v, GetRow(3)|v); } + + //! Operator for Point Mul = Matrix4x4 * Point; + inline_ IcePoint operator*(const IcePoint& v) const + { + return IcePoint( m[0][0]*v.x + m[0][1]*v.y + m[0][2]*v.z + m[0][3], + m[1][0]*v.x + m[1][1]*v.y + m[1][2]*v.z + m[1][3], + m[2][0]*v.x + m[2][1]*v.y + m[2][2]*v.z + m[2][3] ); + } + + //! Operator for Matrix4x4 Scale = Matrix4x4 * float; + inline_ Matrix4x4 operator*(float s) const + { + return Matrix4x4( + m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s, + m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s, + m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s, + m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s); + } + + //! Operator for Matrix4x4 Scale = float * Matrix4x4; + inline_ friend Matrix4x4 operator*(float s, const Matrix4x4& mat) + { + return Matrix4x4( + s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2], s*mat.m[0][3], + s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2], s*mat.m[1][3], + s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2], s*mat.m[2][3], + s*mat.m[3][0], s*mat.m[3][1], s*mat.m[3][2], s*mat.m[3][3]); + } + + //! Operator for Matrix4x4 Div = Matrix4x4 / float; + inline_ Matrix4x4 operator/(float s) const + { + if(s) s = 1.0f / s; + + return Matrix4x4( + m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s, + m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s, + m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s, + m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s); + } + + //! Operator for Matrix4x4 Div = float / Matrix4x4; + inline_ friend Matrix4x4 operator/(float s, const Matrix4x4& mat) + { + return Matrix4x4( + s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2], s/mat.m[0][3], + s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2], s/mat.m[1][3], + s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2], s/mat.m[2][3], + s/mat.m[3][0], s/mat.m[3][1], s/mat.m[3][2], s/mat.m[3][3]); + } + + //! Operator for Matrix4x4 += Matrix4x4; + inline_ Matrix4x4& operator+=(const Matrix4x4& mat) + { + m[0][0]+=mat.m[0][0]; m[0][1]+=mat.m[0][1]; m[0][2]+=mat.m[0][2]; m[0][3]+=mat.m[0][3]; + m[1][0]+=mat.m[1][0]; m[1][1]+=mat.m[1][1]; m[1][2]+=mat.m[1][2]; m[1][3]+=mat.m[1][3]; + m[2][0]+=mat.m[2][0]; m[2][1]+=mat.m[2][1]; m[2][2]+=mat.m[2][2]; m[2][3]+=mat.m[2][3]; + m[3][0]+=mat.m[3][0]; m[3][1]+=mat.m[3][1]; m[3][2]+=mat.m[3][2]; m[3][3]+=mat.m[3][3]; + return *this; + } + + //! Operator for Matrix4x4 -= Matrix4x4; + inline_ Matrix4x4& operator-=(const Matrix4x4& mat) + { + m[0][0]-=mat.m[0][0]; m[0][1]-=mat.m[0][1]; m[0][2]-=mat.m[0][2]; m[0][3]-=mat.m[0][3]; + m[1][0]-=mat.m[1][0]; m[1][1]-=mat.m[1][1]; m[1][2]-=mat.m[1][2]; m[1][3]-=mat.m[1][3]; + m[2][0]-=mat.m[2][0]; m[2][1]-=mat.m[2][1]; m[2][2]-=mat.m[2][2]; m[2][3]-=mat.m[2][3]; + m[3][0]-=mat.m[3][0]; m[3][1]-=mat.m[3][1]; m[3][2]-=mat.m[3][2]; m[3][3]-=mat.m[3][3]; + return *this; + } + + //! Operator for Matrix4x4 *= Matrix4x4; + Matrix4x4& operator*=(const Matrix4x4& mat) + { + HPoint TempRow; + + GetRow(0, TempRow); + m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0]; + m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1]; + m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2]; + m[0][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3]; + + GetRow(1, TempRow); + m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0]; + m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1]; + m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2]; + m[1][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3]; + + GetRow(2, TempRow); + m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0]; + m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1]; + m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2]; + m[2][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3]; + + GetRow(3, TempRow); + m[3][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0]; + m[3][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1]; + m[3][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2]; + m[3][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3]; + + return *this; + } + + //! Operator for Matrix4x4 *= float; + inline_ Matrix4x4& operator*=(float s) + { + m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s; + m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s; + m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s; + m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s; + return *this; + } + + //! Operator for Matrix4x4 /= float; + inline_ Matrix4x4& operator/=(float s) + { + if(s) s = 1.0f / s; + m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s; + m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s; + m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s; + m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s; + return *this; + } + + inline_ const HPoint& operator[](int row) const { return *(const HPoint*)&m[row][0]; } + inline_ HPoint& operator[](int row) { return *(HPoint*)&m[row][0]; } + + public: + + float m[4][4]; + }; + + //! Quickly rotates & translates a vector, using the 4x3 part of a 4x4 matrix + inline_ void TransformPoint4x3(IcePoint& dest, const IcePoint& source, const Matrix4x4& rot) + { + dest.x = rot.m[3][0] + source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0]; + dest.y = rot.m[3][1] + source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1]; + dest.z = rot.m[3][2] + source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2]; + } + + //! Quickly rotates a vector, using the 3x3 part of a 4x4 matrix + inline_ void TransformPoint3x3(IcePoint& dest, const IcePoint& source, const Matrix4x4& rot) + { + dest.x = source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0]; + dest.y = source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1]; + dest.z = source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2]; + } + + ICEMATHS_API void InvertPRMatrix(Matrix4x4& dest, const Matrix4x4& src); + +#endif // __ICEMATRIX4X4_H__ + |