summaryrefslogtreecommitdiffhomepage
path: root/contrib/zlib/examples
diff options
context:
space:
mode:
authorAki <please@ignore.pl>2024-03-02 22:57:02 +0100
committerAki <please@ignore.pl>2024-03-03 00:59:45 +0100
commitca18c5b1b5004ffa88b6b3b85cd038d1217c09c6 (patch)
tree1ba5a8734c96f892322cd65af7cf33041ba4cb68 /contrib/zlib/examples
parente70158ea57302e2fa2d588b67fc8dc18265192eb (diff)
downloadstarshatter-ca18c5b1b5004ffa88b6b3b85cd038d1217c09c6.zip
starshatter-ca18c5b1b5004ffa88b6b3b85cd038d1217c09c6.tar.gz
starshatter-ca18c5b1b5004ffa88b6b3b85cd038d1217c09c6.tar.bz2
zlib sources removed from this tree
This, for whatever reason, breaks std::fs exception handling. All remaining external projects will be moved to use this approach soon. This is to prepare it for more new libraries which would otherwise make the tree grow even further.
Diffstat (limited to 'contrib/zlib/examples')
-rw-r--r--contrib/zlib/examples/README.examples49
-rw-r--r--contrib/zlib/examples/enough.c572
-rw-r--r--contrib/zlib/examples/fitblk.c233
-rw-r--r--contrib/zlib/examples/gun.c702
-rw-r--r--contrib/zlib/examples/gzappend.c504
-rw-r--r--contrib/zlib/examples/gzjoin.c449
-rw-r--r--contrib/zlib/examples/gzlog.c1059
-rw-r--r--contrib/zlib/examples/gzlog.h91
-rw-r--r--contrib/zlib/examples/zlib_how.html545
-rw-r--r--contrib/zlib/examples/zpipe.c205
-rw-r--r--contrib/zlib/examples/zran.c409
11 files changed, 0 insertions, 4818 deletions
diff --git a/contrib/zlib/examples/README.examples b/contrib/zlib/examples/README.examples
deleted file mode 100644
index 56a3171..0000000
--- a/contrib/zlib/examples/README.examples
+++ /dev/null
@@ -1,49 +0,0 @@
-This directory contains examples of the use of zlib and other relevant
-programs and documentation.
-
-enough.c
- calculation and justification of ENOUGH parameter in inftrees.h
- - calculates the maximum table space used in inflate tree
- construction over all possible Huffman codes
-
-fitblk.c
- compress just enough input to nearly fill a requested output size
- - zlib isn't designed to do this, but fitblk does it anyway
-
-gun.c
- uncompress a gzip file
- - illustrates the use of inflateBack() for high speed file-to-file
- decompression using call-back functions
- - is approximately twice as fast as gzip -d
- - also provides Unix uncompress functionality, again twice as fast
-
-gzappend.c
- append to a gzip file
- - illustrates the use of the Z_BLOCK flush parameter for inflate()
- - illustrates the use of deflatePrime() to start at any bit
-
-gzjoin.c
- join gzip files without recalculating the crc or recompressing
- - illustrates the use of the Z_BLOCK flush parameter for inflate()
- - illustrates the use of crc32_combine()
-
-gzlog.c
-gzlog.h
- efficiently and robustly maintain a message log file in gzip format
- - illustrates use of raw deflate, Z_PARTIAL_FLUSH, deflatePrime(),
- and deflateSetDictionary()
- - illustrates use of a gzip header extra field
-
-zlib_how.html
- painfully comprehensive description of zpipe.c (see below)
- - describes in excruciating detail the use of deflate() and inflate()
-
-zpipe.c
- reads and writes zlib streams from stdin to stdout
- - illustrates the proper use of deflate() and inflate()
- - deeply commented in zlib_how.html (see above)
-
-zran.c
- index a zlib or gzip stream and randomly access it
- - illustrates the use of Z_BLOCK, inflatePrime(), and
- inflateSetDictionary() to provide random access
diff --git a/contrib/zlib/examples/enough.c b/contrib/zlib/examples/enough.c
deleted file mode 100644
index b991144..0000000
--- a/contrib/zlib/examples/enough.c
+++ /dev/null
@@ -1,572 +0,0 @@
-/* enough.c -- determine the maximum size of inflate's Huffman code tables over
- * all possible valid and complete Huffman codes, subject to a length limit.
- * Copyright (C) 2007, 2008, 2012 Mark Adler
- * Version 1.4 18 August 2012 Mark Adler
- */
-
-/* Version history:
- 1.0 3 Jan 2007 First version (derived from codecount.c version 1.4)
- 1.1 4 Jan 2007 Use faster incremental table usage computation
- Prune examine() search on previously visited states
- 1.2 5 Jan 2007 Comments clean up
- As inflate does, decrease root for short codes
- Refuse cases where inflate would increase root
- 1.3 17 Feb 2008 Add argument for initial root table size
- Fix bug for initial root table size == max - 1
- Use a macro to compute the history index
- 1.4 18 Aug 2012 Avoid shifts more than bits in type (caused endless loop!)
- Clean up comparisons of different types
- Clean up code indentation
- */
-
-/*
- Examine all possible Huffman codes for a given number of symbols and a
- maximum code length in bits to determine the maximum table size for zilb's
- inflate. Only complete Huffman codes are counted.
-
- Two codes are considered distinct if the vectors of the number of codes per
- length are not identical. So permutations of the symbol assignments result
- in the same code for the counting, as do permutations of the assignments of
- the bit values to the codes (i.e. only canonical codes are counted).
-
- We build a code from shorter to longer lengths, determining how many symbols
- are coded at each length. At each step, we have how many symbols remain to
- be coded, what the last code length used was, and how many bit patterns of
- that length remain unused. Then we add one to the code length and double the
- number of unused patterns to graduate to the next code length. We then
- assign all portions of the remaining symbols to that code length that
- preserve the properties of a correct and eventually complete code. Those
- properties are: we cannot use more bit patterns than are available; and when
- all the symbols are used, there are exactly zero possible bit patterns
- remaining.
-
- The inflate Huffman decoding algorithm uses two-level lookup tables for
- speed. There is a single first-level table to decode codes up to root bits
- in length (root == 9 in the current inflate implementation). The table
- has 1 << root entries and is indexed by the next root bits of input. Codes
- shorter than root bits have replicated table entries, so that the correct
- entry is pointed to regardless of the bits that follow the short code. If
- the code is longer than root bits, then the table entry points to a second-
- level table. The size of that table is determined by the longest code with
- that root-bit prefix. If that longest code has length len, then the table
- has size 1 << (len - root), to index the remaining bits in that set of
- codes. Each subsequent root-bit prefix then has its own sub-table. The
- total number of table entries required by the code is calculated
- incrementally as the number of codes at each bit length is populated. When
- all of the codes are shorter than root bits, then root is reduced to the
- longest code length, resulting in a single, smaller, one-level table.
-
- The inflate algorithm also provides for small values of root (relative to
- the log2 of the number of symbols), where the shortest code has more bits
- than root. In that case, root is increased to the length of the shortest
- code. This program, by design, does not handle that case, so it is verified
- that the number of symbols is less than 2^(root + 1).
-
- In order to speed up the examination (by about ten orders of magnitude for
- the default arguments), the intermediate states in the build-up of a code
- are remembered and previously visited branches are pruned. The memory
- required for this will increase rapidly with the total number of symbols and
- the maximum code length in bits. However this is a very small price to pay
- for the vast speedup.
-
- First, all of the possible Huffman codes are counted, and reachable
- intermediate states are noted by a non-zero count in a saved-results array.
- Second, the intermediate states that lead to (root + 1) bit or longer codes
- are used to look at all sub-codes from those junctures for their inflate
- memory usage. (The amount of memory used is not affected by the number of
- codes of root bits or less in length.) Third, the visited states in the
- construction of those sub-codes and the associated calculation of the table
- size is recalled in order to avoid recalculating from the same juncture.
- Beginning the code examination at (root + 1) bit codes, which is enabled by
- identifying the reachable nodes, accounts for about six of the orders of
- magnitude of improvement for the default arguments. About another four
- orders of magnitude come from not revisiting previous states. Out of
- approximately 2x10^16 possible Huffman codes, only about 2x10^6 sub-codes
- need to be examined to cover all of the possible table memory usage cases
- for the default arguments of 286 symbols limited to 15-bit codes.
-
- Note that an unsigned long long type is used for counting. It is quite easy
- to exceed the capacity of an eight-byte integer with a large number of
- symbols and a large maximum code length, so multiple-precision arithmetic
- would need to replace the unsigned long long arithmetic in that case. This
- program will abort if an overflow occurs. The big_t type identifies where
- the counting takes place.
-
- An unsigned long long type is also used for calculating the number of
- possible codes remaining at the maximum length. This limits the maximum
- code length to the number of bits in a long long minus the number of bits
- needed to represent the symbols in a flat code. The code_t type identifies
- where the bit pattern counting takes place.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <assert.h>
-
-#define local static
-
-/* special data types */
-typedef unsigned long long big_t; /* type for code counting */
-typedef unsigned long long code_t; /* type for bit pattern counting */
-struct tab { /* type for been here check */
- size_t len; /* length of bit vector in char's */
- char *vec; /* allocated bit vector */
-};
-
-/* The array for saving results, num[], is indexed with this triplet:
-
- syms: number of symbols remaining to code
- left: number of available bit patterns at length len
- len: number of bits in the codes currently being assigned
-
- Those indices are constrained thusly when saving results:
-
- syms: 3..totsym (totsym == total symbols to code)
- left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
- len: 1..max - 1 (max == maximum code length in bits)
-
- syms == 2 is not saved since that immediately leads to a single code. left
- must be even, since it represents the number of available bit patterns at
- the current length, which is double the number at the previous length.
- left ends at syms-1 since left == syms immediately results in a single code.
- (left > sym is not allowed since that would result in an incomplete code.)
- len is less than max, since the code completes immediately when len == max.
-
- The offset into the array is calculated for the three indices with the
- first one (syms) being outermost, and the last one (len) being innermost.
- We build the array with length max-1 lists for the len index, with syms-3
- of those for each symbol. There are totsym-2 of those, with each one
- varying in length as a function of sym. See the calculation of index in
- count() for the index, and the calculation of size in main() for the size
- of the array.
-
- For the deflate example of 286 symbols limited to 15-bit codes, the array
- has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than
- half of the space allocated for saved results is actually used -- not all
- possible triplets are reached in the generation of valid Huffman codes.
- */
-
-/* The array for tracking visited states, done[], is itself indexed identically
- to the num[] array as described above for the (syms, left, len) triplet.
- Each element in the array is further indexed by the (mem, rem) doublet,
- where mem is the amount of inflate table space used so far, and rem is the
- remaining unused entries in the current inflate sub-table. Each indexed
- element is simply one bit indicating whether the state has been visited or
- not. Since the ranges for mem and rem are not known a priori, each bit
- vector is of a variable size, and grows as needed to accommodate the visited
- states. mem and rem are used to calculate a single index in a triangular
- array. Since the range of mem is expected in the default case to be about
- ten times larger than the range of rem, the array is skewed to reduce the
- memory usage, with eight times the range for mem than for rem. See the
- calculations for offset and bit in beenhere() for the details.
-
- For the deflate example of 286 symbols limited to 15-bit codes, the bit
- vectors grow to total approximately 21 MB, in addition to the 4.3 MB done[]
- array itself.
- */
-
-/* Globals to avoid propagating constants or constant pointers recursively */
-local int max; /* maximum allowed bit length for the codes */
-local int root; /* size of base code table in bits */
-local int large; /* largest code table so far */
-local size_t size; /* number of elements in num and done */
-local int *code; /* number of symbols assigned to each bit length */
-local big_t *num; /* saved results array for code counting */
-local struct tab *done; /* states already evaluated array */
-
-/* Index function for num[] and done[] */
-#define INDEX(i,j,k) (((size_t)((i-1)>>1)*((i-2)>>1)+(j>>1)-1)*(max-1)+k-1)
-
-/* Free allocated space. Uses globals code, num, and done. */
-local void cleanup(void)
-{
- size_t n;
-
- if (done != NULL) {
- for (n = 0; n < size; n++)
- if (done[n].len)
- free(done[n].vec);
- free(done);
- }
- if (num != NULL)
- free(num);
- if (code != NULL)
- free(code);
-}
-
-/* Return the number of possible Huffman codes using bit patterns of lengths
- len through max inclusive, coding syms symbols, with left bit patterns of
- length len unused -- return -1 if there is an overflow in the counting.
- Keep a record of previous results in num to prevent repeating the same
- calculation. Uses the globals max and num. */
-local big_t count(int syms, int len, int left)
-{
- big_t sum; /* number of possible codes from this juncture */
- big_t got; /* value returned from count() */
- int least; /* least number of syms to use at this juncture */
- int most; /* most number of syms to use at this juncture */
- int use; /* number of bit patterns to use in next call */
- size_t index; /* index of this case in *num */
-
- /* see if only one possible code */
- if (syms == left)
- return 1;
-
- /* note and verify the expected state */
- assert(syms > left && left > 0 && len < max);
-
- /* see if we've done this one already */
- index = INDEX(syms, left, len);
- got = num[index];
- if (got)
- return got; /* we have -- return the saved result */
-
- /* we need to use at least this many bit patterns so that the code won't be
- incomplete at the next length (more bit patterns than symbols) */
- least = (left << 1) - syms;
- if (least < 0)
- least = 0;
-
- /* we can use at most this many bit patterns, lest there not be enough
- available for the remaining symbols at the maximum length (if there were
- no limit to the code length, this would become: most = left - 1) */
- most = (((code_t)left << (max - len)) - syms) /
- (((code_t)1 << (max - len)) - 1);
-
- /* count all possible codes from this juncture and add them up */
- sum = 0;
- for (use = least; use <= most; use++) {
- got = count(syms - use, len + 1, (left - use) << 1);
- sum += got;
- if (got == (big_t)0 - 1 || sum < got) /* overflow */
- return (big_t)0 - 1;
- }
-
- /* verify that all recursive calls are productive */
- assert(sum != 0);
-
- /* save the result and return it */
- num[index] = sum;
- return sum;
-}
-
-/* Return true if we've been here before, set to true if not. Set a bit in a
- bit vector to indicate visiting this state. Each (syms,len,left) state
- has a variable size bit vector indexed by (mem,rem). The bit vector is
- lengthened if needed to allow setting the (mem,rem) bit. */
-local int beenhere(int syms, int len, int left, int mem, int rem)
-{
- size_t index; /* index for this state's bit vector */
- size_t offset; /* offset in this state's bit vector */
- int bit; /* mask for this state's bit */
- size_t length; /* length of the bit vector in bytes */
- char *vector; /* new or enlarged bit vector */
-
- /* point to vector for (syms,left,len), bit in vector for (mem,rem) */
- index = INDEX(syms, left, len);
- mem -= 1 << root;
- offset = (mem >> 3) + rem;
- offset = ((offset * (offset + 1)) >> 1) + rem;
- bit = 1 << (mem & 7);
-
- /* see if we've been here */
- length = done[index].len;
- if (offset < length && (done[index].vec[offset] & bit) != 0)
- return 1; /* done this! */
-
- /* we haven't been here before -- set the bit to show we have now */
-
- /* see if we need to lengthen the vector in order to set the bit */
- if (length <= offset) {
- /* if we have one already, enlarge it, zero out the appended space */
- if (length) {
- do {
- length <<= 1;
- } while (length <= offset);
- vector = realloc(done[index].vec, length);
- if (vector != NULL)
- memset(vector + done[index].len, 0, length - done[index].len);
- }
-
- /* otherwise we need to make a new vector and zero it out */
- else {
- length = 1 << (len - root);
- while (length <= offset)
- length <<= 1;
- vector = calloc(length, sizeof(char));
- }
-
- /* in either case, bail if we can't get the memory */
- if (vector == NULL) {
- fputs("abort: unable to allocate enough memory\n", stderr);
- cleanup();
- exit(1);
- }
-
- /* install the new vector */
- done[index].len = length;
- done[index].vec = vector;
- }
-
- /* set the bit */
- done[index].vec[offset] |= bit;
- return 0;
-}
-
-/* Examine all possible codes from the given node (syms, len, left). Compute
- the amount of memory required to build inflate's decoding tables, where the
- number of code structures used so far is mem, and the number remaining in
- the current sub-table is rem. Uses the globals max, code, root, large, and
- done. */
-local void examine(int syms, int len, int left, int mem, int rem)
-{
- int least; /* least number of syms to use at this juncture */
- int most; /* most number of syms to use at this juncture */
- int use; /* number of bit patterns to use in next call */
-
- /* see if we have a complete code */
- if (syms == left) {
- /* set the last code entry */
- code[len] = left;
-
- /* complete computation of memory used by this code */
- while (rem < left) {
- left -= rem;
- rem = 1 << (len - root);
- mem += rem;
- }
- assert(rem == left);
-
- /* if this is a new maximum, show the entries used and the sub-code */
- if (mem > large) {
- large = mem;
- printf("max %d: ", mem);
- for (use = root + 1; use <= max; use++)
- if (code[use])
- printf("%d[%d] ", code[use], use);
- putchar('\n');
- fflush(stdout);
- }
-
- /* remove entries as we drop back down in the recursion */
- code[len] = 0;
- return;
- }
-
- /* prune the tree if we can */
- if (beenhere(syms, len, left, mem, rem))
- return;
-
- /* we need to use at least this many bit patterns so that the code won't be
- incomplete at the next length (more bit patterns than symbols) */
- least = (left << 1) - syms;
- if (least < 0)
- least = 0;
-
- /* we can use at most this many bit patterns, lest there not be enough
- available for the remaining symbols at the maximum length (if there were
- no limit to the code length, this would become: most = left - 1) */
- most = (((code_t)left << (max - len)) - syms) /
- (((code_t)1 << (max - len)) - 1);
-
- /* occupy least table spaces, creating new sub-tables as needed */
- use = least;
- while (rem < use) {
- use -= rem;
- rem = 1 << (len - root);
- mem += rem;
- }
- rem -= use;
-
- /* examine codes from here, updating table space as we go */
- for (use = least; use <= most; use++) {
- code[len] = use;
- examine(syms - use, len + 1, (left - use) << 1,
- mem + (rem ? 1 << (len - root) : 0), rem << 1);
- if (rem == 0) {
- rem = 1 << (len - root);
- mem += rem;
- }
- rem--;
- }
-
- /* remove entries as we drop back down in the recursion */
- code[len] = 0;
-}
-
-/* Look at all sub-codes starting with root + 1 bits. Look at only the valid
- intermediate code states (syms, left, len). For each completed code,
- calculate the amount of memory required by inflate to build the decoding
- tables. Find the maximum amount of memory required and show the code that
- requires that maximum. Uses the globals max, root, and num. */
-local void enough(int syms)
-{
- int n; /* number of remaing symbols for this node */
- int left; /* number of unused bit patterns at this length */
- size_t index; /* index of this case in *num */
-
- /* clear code */
- for (n = 0; n <= max; n++)
- code[n] = 0;
-
- /* look at all (root + 1) bit and longer codes */
- large = 1 << root; /* base table */
- if (root < max) /* otherwise, there's only a base table */
- for (n = 3; n <= syms; n++)
- for (left = 2; left < n; left += 2)
- {
- /* look at all reachable (root + 1) bit nodes, and the
- resulting codes (complete at root + 2 or more) */
- index = INDEX(n, left, root + 1);
- if (root + 1 < max && num[index]) /* reachable node */
- examine(n, root + 1, left, 1 << root, 0);
-
- /* also look at root bit codes with completions at root + 1
- bits (not saved in num, since complete), just in case */
- if (num[index - 1] && n <= left << 1)
- examine((n - left) << 1, root + 1, (n - left) << 1,
- 1 << root, 0);
- }
-
- /* done */
- printf("done: maximum of %d table entries\n", large);
-}
-
-/*
- Examine and show the total number of possible Huffman codes for a given
- maximum number of symbols, initial root table size, and maximum code length
- in bits -- those are the command arguments in that order. The default
- values are 286, 9, and 15 respectively, for the deflate literal/length code.
- The possible codes are counted for each number of coded symbols from two to
- the maximum. The counts for each of those and the total number of codes are
- shown. The maximum number of inflate table entires is then calculated
- across all possible codes. Each new maximum number of table entries and the
- associated sub-code (starting at root + 1 == 10 bits) is shown.
-
- To count and examine Huffman codes that are not length-limited, provide a
- maximum length equal to the number of symbols minus one.
-
- For the deflate literal/length code, use "enough". For the deflate distance
- code, use "enough 30 6".
-
- This uses the %llu printf format to print big_t numbers, which assumes that
- big_t is an unsigned long long. If the big_t type is changed (for example
- to a multiple precision type), the method of printing will also need to be
- updated.
- */
-int main(int argc, char **argv)
-{
- int syms; /* total number of symbols to code */
- int n; /* number of symbols to code for this run */
- big_t got; /* return value of count() */
- big_t sum; /* accumulated number of codes over n */
- code_t word; /* for counting bits in code_t */
-
- /* set up globals for cleanup() */
- code = NULL;
- num = NULL;
- done = NULL;
-
- /* get arguments -- default to the deflate literal/length code */
- syms = 286;
- root = 9;
- max = 15;
- if (argc > 1) {
- syms = atoi(argv[1]);
- if (argc > 2) {
- root = atoi(argv[2]);
- if (argc > 3)
- max = atoi(argv[3]);
- }
- }
- if (argc > 4 || syms < 2 || root < 1 || max < 1) {
- fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
- stderr);
- return 1;
- }
-
- /* if not restricting the code length, the longest is syms - 1 */
- if (max > syms - 1)
- max = syms - 1;
-
- /* determine the number of bits in a code_t */
- for (n = 0, word = 1; word; n++, word <<= 1)
- ;
-
- /* make sure that the calculation of most will not overflow */
- if (max > n || (code_t)(syms - 2) >= (((code_t)0 - 1) >> (max - 1))) {
- fputs("abort: code length too long for internal types\n", stderr);
- return 1;
- }
-
- /* reject impossible code requests */
- if ((code_t)(syms - 1) > ((code_t)1 << max) - 1) {
- fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
- syms, max);
- return 1;
- }
-
- /* allocate code vector */
- code = calloc(max + 1, sizeof(int));
- if (code == NULL) {
- fputs("abort: unable to allocate enough memory\n", stderr);
- return 1;
- }
-
- /* determine size of saved results array, checking for overflows,
- allocate and clear the array (set all to zero with calloc()) */
- if (syms == 2) /* iff max == 1 */
- num = NULL; /* won't be saving any results */
- else {
- size = syms >> 1;
- if (size > ((size_t)0 - 1) / (n = (syms - 1) >> 1) ||
- (size *= n, size > ((size_t)0 - 1) / (n = max - 1)) ||
- (size *= n, size > ((size_t)0 - 1) / sizeof(big_t)) ||
- (num = calloc(size, sizeof(big_t))) == NULL) {
- fputs("abort: unable to allocate enough memory\n", stderr);
- cleanup();
- return 1;
- }
- }
-
- /* count possible codes for all numbers of symbols, add up counts */
- sum = 0;
- for (n = 2; n <= syms; n++) {
- got = count(n, 1, 2);
- sum += got;
- if (got == (big_t)0 - 1 || sum < got) { /* overflow */
- fputs("abort: can't count that high!\n", stderr);
- cleanup();
- return 1;
- }
- printf("%llu %d-codes\n", got, n);
- }
- printf("%llu total codes for 2 to %d symbols", sum, syms);
- if (max < syms - 1)
- printf(" (%d-bit length limit)\n", max);
- else
- puts(" (no length limit)");
-
- /* allocate and clear done array for beenhere() */
- if (syms == 2)
- done = NULL;
- else if (size > ((size_t)0 - 1) / sizeof(struct tab) ||
- (done = calloc(size, sizeof(struct tab))) == NULL) {
- fputs("abort: unable to allocate enough memory\n", stderr);
- cleanup();
- return 1;
- }
-
- /* find and show maximum inflate table usage */
- if (root > max) /* reduce root to max length */
- root = max;
- if ((code_t)syms < ((code_t)1 << (root + 1)))
- enough(syms);
- else
- puts("cannot handle minimum code lengths > root");
-
- /* done */
- cleanup();
- return 0;
-}
diff --git a/contrib/zlib/examples/fitblk.c b/contrib/zlib/examples/fitblk.c
deleted file mode 100644
index c61de5c..0000000
--- a/contrib/zlib/examples/fitblk.c
+++ /dev/null
@@ -1,233 +0,0 @@
-/* fitblk.c: example of fitting compressed output to a specified size
- Not copyrighted -- provided to the public domain
- Version 1.1 25 November 2004 Mark Adler */
-
-/* Version history:
- 1.0 24 Nov 2004 First version
- 1.1 25 Nov 2004 Change deflateInit2() to deflateInit()
- Use fixed-size, stack-allocated raw buffers
- Simplify code moving compression to subroutines
- Use assert() for internal errors
- Add detailed description of approach
- */
-
-/* Approach to just fitting a requested compressed size:
-
- fitblk performs three compression passes on a portion of the input
- data in order to determine how much of that input will compress to
- nearly the requested output block size. The first pass generates
- enough deflate blocks to produce output to fill the requested
- output size plus a specfied excess amount (see the EXCESS define
- below). The last deflate block may go quite a bit past that, but
- is discarded. The second pass decompresses and recompresses just
- the compressed data that fit in the requested plus excess sized
- buffer. The deflate process is terminated after that amount of
- input, which is less than the amount consumed on the first pass.
- The last deflate block of the result will be of a comparable size
- to the final product, so that the header for that deflate block and
- the compression ratio for that block will be about the same as in
- the final product. The third compression pass decompresses the
- result of the second step, but only the compressed data up to the
- requested size minus an amount to allow the compressed stream to
- complete (see the MARGIN define below). That will result in a
- final compressed stream whose length is less than or equal to the
- requested size. Assuming sufficient input and a requested size
- greater than a few hundred bytes, the shortfall will typically be
- less than ten bytes.
-
- If the input is short enough that the first compression completes
- before filling the requested output size, then that compressed
- stream is return with no recompression.
-
- EXCESS is chosen to be just greater than the shortfall seen in a
- two pass approach similar to the above. That shortfall is due to
- the last deflate block compressing more efficiently with a smaller
- header on the second pass. EXCESS is set to be large enough so
- that there is enough uncompressed data for the second pass to fill
- out the requested size, and small enough so that the final deflate
- block of the second pass will be close in size to the final deflate
- block of the third and final pass. MARGIN is chosen to be just
- large enough to assure that the final compression has enough room
- to complete in all cases.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <assert.h>
-#include "zlib.h"
-
-#define local static
-
-/* print nastygram and leave */
-local void quit(char *why)
-{
- fprintf(stderr, "fitblk abort: %s\n", why);
- exit(1);
-}
-
-#define RAWLEN 4096 /* intermediate uncompressed buffer size */
-
-/* compress from file to def until provided buffer is full or end of
- input reached; return last deflate() return value, or Z_ERRNO if
- there was read error on the file */
-local int partcompress(FILE *in, z_streamp def)
-{
- int ret, flush;
- unsigned char raw[RAWLEN];
-
- flush = Z_NO_FLUSH;
- do {
- def->avail_in = fread(raw, 1, RAWLEN, in);
- if (ferror(in))
- return Z_ERRNO;
- def->next_in = raw;
- if (feof(in))
- flush = Z_FINISH;
- ret = deflate(def, flush);
- assert(ret != Z_STREAM_ERROR);
- } while (def->avail_out != 0 && flush == Z_NO_FLUSH);
- return ret;
-}
-
-/* recompress from inf's input to def's output; the input for inf and
- the output for def are set in those structures before calling;
- return last deflate() return value, or Z_MEM_ERROR if inflate()
- was not able to allocate enough memory when it needed to */
-local int recompress(z_streamp inf, z_streamp def)
-{
- int ret, flush;
- unsigned char raw[RAWLEN];
-
- flush = Z_NO_FLUSH;
- do {
- /* decompress */
- inf->avail_out = RAWLEN;
- inf->next_out = raw;
- ret = inflate(inf, Z_NO_FLUSH);
- assert(ret != Z_STREAM_ERROR && ret != Z_DATA_ERROR &&
- ret != Z_NEED_DICT);
- if (ret == Z_MEM_ERROR)
- return ret;
-
- /* compress what was decompresed until done or no room */
- def->avail_in = RAWLEN - inf->avail_out;
- def->next_in = raw;
- if (inf->avail_out != 0)
- flush = Z_FINISH;
- ret = deflate(def, flush);
- assert(ret != Z_STREAM_ERROR);
- } while (ret != Z_STREAM_END && def->avail_out != 0);
- return ret;
-}
-
-#define EXCESS 256 /* empirically determined stream overage */
-#define MARGIN 8 /* amount to back off for completion */
-
-/* compress from stdin to fixed-size block on stdout */
-int main(int argc, char **argv)
-{
- int ret; /* return code */
- unsigned size; /* requested fixed output block size */
- unsigned have; /* bytes written by deflate() call */
- unsigned char *blk; /* intermediate and final stream */
- unsigned char *tmp; /* close to desired size stream */
- z_stream def, inf; /* zlib deflate and inflate states */
-
- /* get requested output size */
- if (argc != 2)
- quit("need one argument: size of output block");
- ret = strtol(argv[1], argv + 1, 10);
- if (argv[1][0] != 0)
- quit("argument must be a number");
- if (ret < 8) /* 8 is minimum zlib stream size */
- quit("need positive size of 8 or greater");
- size = (unsigned)ret;
-
- /* allocate memory for buffers and compression engine */
- blk = malloc(size + EXCESS);
- def.zalloc = Z_NULL;
- def.zfree = Z_NULL;
- def.opaque = Z_NULL;
- ret = deflateInit(&def, Z_DEFAULT_COMPRESSION);
- if (ret != Z_OK || blk == NULL)
- quit("out of memory");
-
- /* compress from stdin until output full, or no more input */
- def.avail_out = size + EXCESS;
- def.next_out = blk;
- ret = partcompress(stdin, &def);
- if (ret == Z_ERRNO)
- quit("error reading input");
-
- /* if it all fit, then size was undersubscribed -- done! */
- if (ret == Z_STREAM_END && def.avail_out >= EXCESS) {
- /* write block to stdout */
- have = size + EXCESS - def.avail_out;
- if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
- quit("error writing output");
-
- /* clean up and print results to stderr */
- ret = deflateEnd(&def);
- assert(ret != Z_STREAM_ERROR);
- free(blk);
- fprintf(stderr,
- "%u bytes unused out of %u requested (all input)\n",
- size - have, size);
- return 0;
- }
-
- /* it didn't all fit -- set up for recompression */
- inf.zalloc = Z_NULL;
- inf.zfree = Z_NULL;
- inf.opaque = Z_NULL;
- inf.avail_in = 0;
- inf.next_in = Z_NULL;
- ret = inflateInit(&inf);
- tmp = malloc(size + EXCESS);
- if (ret != Z_OK || tmp == NULL)
- quit("out of memory");
- ret = deflateReset(&def);
- assert(ret != Z_STREAM_ERROR);
-
- /* do first recompression close to the right amount */
- inf.avail_in = size + EXCESS;
- inf.next_in = blk;
- def.avail_out = size + EXCESS;
- def.next_out = tmp;
- ret = recompress(&inf, &def);
- if (ret == Z_MEM_ERROR)
- quit("out of memory");
-
- /* set up for next reocmpression */
- ret = inflateReset(&inf);
- assert(ret != Z_STREAM_ERROR);
- ret = deflateReset(&def);
- assert(ret != Z_STREAM_ERROR);
-
- /* do second and final recompression (third compression) */
- inf.avail_in = size - MARGIN; /* assure stream will complete */
- inf.next_in = tmp;
- def.avail_out = size;
- def.next_out = blk;
- ret = recompress(&inf, &def);
- if (ret == Z_MEM_ERROR)
- quit("out of memory");
- assert(ret == Z_STREAM_END); /* otherwise MARGIN too small */
-
- /* done -- write block to stdout */
- have = size - def.avail_out;
- if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
- quit("error writing output");
-
- /* clean up and print results to stderr */
- free(tmp);
- ret = inflateEnd(&inf);
- assert(ret != Z_STREAM_ERROR);
- ret = deflateEnd(&def);
- assert(ret != Z_STREAM_ERROR);
- free(blk);
- fprintf(stderr,
- "%u bytes unused out of %u requested (%lu input)\n",
- size - have, size, def.total_in);
- return 0;
-}
diff --git a/contrib/zlib/examples/gun.c b/contrib/zlib/examples/gun.c
deleted file mode 100644
index be44fa5..0000000
--- a/contrib/zlib/examples/gun.c
+++ /dev/null
@@ -1,702 +0,0 @@
-/* gun.c -- simple gunzip to give an example of the use of inflateBack()
- * Copyright (C) 2003, 2005, 2008, 2010, 2012 Mark Adler
- * For conditions of distribution and use, see copyright notice in zlib.h
- Version 1.7 12 August 2012 Mark Adler */
-
-/* Version history:
- 1.0 16 Feb 2003 First version for testing of inflateBack()
- 1.1 21 Feb 2005 Decompress concatenated gzip streams
- Remove use of "this" variable (C++ keyword)
- Fix return value for in()
- Improve allocation failure checking
- Add typecasting for void * structures
- Add -h option for command version and usage
- Add a bunch of comments
- 1.2 20 Mar 2005 Add Unix compress (LZW) decompression
- Copy file attributes from input file to output file
- 1.3 12 Jun 2005 Add casts for error messages [Oberhumer]
- 1.4 8 Dec 2006 LZW decompression speed improvements
- 1.5 9 Feb 2008 Avoid warning in latest version of gcc
- 1.6 17 Jan 2010 Avoid signed/unsigned comparison warnings
- 1.7 12 Aug 2012 Update for z_const usage in zlib 1.2.8
- */
-
-/*
- gun [ -t ] [ name ... ]
-
- decompresses the data in the named gzip files. If no arguments are given,
- gun will decompress from stdin to stdout. The names must end in .gz, -gz,
- .z, -z, _z, or .Z. The uncompressed data will be written to a file name
- with the suffix stripped. On success, the original file is deleted. On
- failure, the output file is deleted. For most failures, the command will
- continue to process the remaining names on the command line. A memory
- allocation failure will abort the command. If -t is specified, then the
- listed files or stdin will be tested as gzip files for integrity (without
- checking for a proper suffix), no output will be written, and no files
- will be deleted.
-
- Like gzip, gun allows concatenated gzip streams and will decompress them,
- writing all of the uncompressed data to the output. Unlike gzip, gun allows
- an empty file on input, and will produce no error writing an empty output
- file.
-
- gun will also decompress files made by Unix compress, which uses LZW
- compression. These files are automatically detected by virtue of their
- magic header bytes. Since the end of Unix compress stream is marked by the
- end-of-file, they cannot be concantenated. If a Unix compress stream is
- encountered in an input file, it is the last stream in that file.
-
- Like gunzip and uncompress, the file attributes of the original compressed
- file are maintained in the final uncompressed file, to the extent that the
- user permissions allow it.
-
- On my Mac OS X PowerPC G4, gun is almost twice as fast as gunzip (version
- 1.2.4) is on the same file, when gun is linked with zlib 1.2.2. Also the
- LZW decompression provided by gun is about twice as fast as the standard
- Unix uncompress command.
- */
-
-/* external functions and related types and constants */
-#include <stdio.h> /* fprintf() */
-#include <stdlib.h> /* malloc(), free() */
-#include <string.h> /* strerror(), strcmp(), strlen(), memcpy() */
-#include <errno.h> /* errno */
-#include <fcntl.h> /* open() */
-#include <unistd.h> /* read(), write(), close(), chown(), unlink() */
-#include <sys/types.h>
-#include <sys/stat.h> /* stat(), chmod() */
-#include <utime.h> /* utime() */
-#include "zlib.h" /* inflateBackInit(), inflateBack(), */
- /* inflateBackEnd(), crc32() */
-
-/* function declaration */
-#define local static
-
-/* buffer constants */
-#define SIZE 32768U /* input and output buffer sizes */
-#define PIECE 16384 /* limits i/o chunks for 16-bit int case */
-
-/* structure for infback() to pass to input function in() -- it maintains the
- input file and a buffer of size SIZE */
-struct ind {
- int infile;
- unsigned char *inbuf;
-};
-
-/* Load input buffer, assumed to be empty, and return bytes loaded and a
- pointer to them. read() is called until the buffer is full, or until it
- returns end-of-file or error. Return 0 on error. */
-local unsigned in(void *in_desc, z_const unsigned char **buf)
-{
- int ret;
- unsigned len;
- unsigned char *next;
- struct ind *me = (struct ind *)in_desc;
-
- next = me->inbuf;
- *buf = next;
- len = 0;
- do {
- ret = PIECE;
- if ((unsigned)ret > SIZE - len)
- ret = (int)(SIZE - len);
- ret = (int)read(me->infile, next, ret);
- if (ret == -1) {
- len = 0;
- break;
- }
- next += ret;
- len += ret;
- } while (ret != 0 && len < SIZE);
- return len;
-}
-
-/* structure for infback() to pass to output function out() -- it maintains the
- output file, a running CRC-32 check on the output and the total number of
- bytes output, both for checking against the gzip trailer. (The length in
- the gzip trailer is stored modulo 2^32, so it's ok if a long is 32 bits and
- the output is greater than 4 GB.) */
-struct outd {
- int outfile;
- int check; /* true if checking crc and total */
- unsigned long crc;
- unsigned long total;
-};
-
-/* Write output buffer and update the CRC-32 and total bytes written. write()
- is called until all of the output is written or an error is encountered.
- On success out() returns 0. For a write failure, out() returns 1. If the
- output file descriptor is -1, then nothing is written.
- */
-local int out(void *out_desc, unsigned char *buf, unsigned len)
-{
- int ret;
- struct outd *me = (struct outd *)out_desc;
-
- if (me->check) {
- me->crc = crc32(me->crc, buf, len);
- me->total += len;
- }
- if (me->outfile != -1)
- do {
- ret = PIECE;
- if ((unsigned)ret > len)
- ret = (int)len;
- ret = (int)write(me->outfile, buf, ret);
- if (ret == -1)
- return 1;
- buf += ret;
- len -= ret;
- } while (len != 0);
- return 0;
-}
-
-/* next input byte macro for use inside lunpipe() and gunpipe() */
-#define NEXT() (have ? 0 : (have = in(indp, &next)), \
- last = have ? (have--, (int)(*next++)) : -1)
-
-/* memory for gunpipe() and lunpipe() --
- the first 256 entries of prefix[] and suffix[] are never used, could
- have offset the index, but it's faster to waste the memory */
-unsigned char inbuf[SIZE]; /* input buffer */
-unsigned char outbuf[SIZE]; /* output buffer */
-unsigned short prefix[65536]; /* index to LZW prefix string */
-unsigned char suffix[65536]; /* one-character LZW suffix */
-unsigned char match[65280 + 2]; /* buffer for reversed match or gzip
- 32K sliding window */
-
-/* throw out what's left in the current bits byte buffer (this is a vestigial
- aspect of the compressed data format derived from an implementation that
- made use of a special VAX machine instruction!) */
-#define FLUSHCODE() \
- do { \
- left = 0; \
- rem = 0; \
- if (chunk > have) { \
- chunk -= have; \
- have = 0; \
- if (NEXT() == -1) \
- break; \
- chunk--; \
- if (chunk > have) { \
- chunk = have = 0; \
- break; \
- } \
- } \
- have -= chunk; \
- next += chunk; \
- chunk = 0; \
- } while (0)
-
-/* Decompress a compress (LZW) file from indp to outfile. The compress magic
- header (two bytes) has already been read and verified. There are have bytes
- of buffered input at next. strm is used for passing error information back
- to gunpipe().
-
- lunpipe() will return Z_OK on success, Z_BUF_ERROR for an unexpected end of
- file, read error, or write error (a write error indicated by strm->next_in
- not equal to Z_NULL), or Z_DATA_ERROR for invalid input.
- */
-local int lunpipe(unsigned have, z_const unsigned char *next, struct ind *indp,
- int outfile, z_stream *strm)
-{
- int last; /* last byte read by NEXT(), or -1 if EOF */
- unsigned chunk; /* bytes left in current chunk */
- int left; /* bits left in rem */
- unsigned rem; /* unused bits from input */
- int bits; /* current bits per code */
- unsigned code; /* code, table traversal index */
- unsigned mask; /* mask for current bits codes */
- int max; /* maximum bits per code for this stream */
- unsigned flags; /* compress flags, then block compress flag */
- unsigned end; /* last valid entry in prefix/suffix tables */
- unsigned temp; /* current code */
- unsigned prev; /* previous code */
- unsigned final; /* last character written for previous code */
- unsigned stack; /* next position for reversed string */
- unsigned outcnt; /* bytes in output buffer */
- struct outd outd; /* output structure */
- unsigned char *p;
-
- /* set up output */
- outd.outfile = outfile;
- outd.check = 0;
-
- /* process remainder of compress header -- a flags byte */
- flags = NEXT();
- if (last == -1)
- return Z_BUF_ERROR;
- if (flags & 0x60) {
- strm->msg = (char *)"unknown lzw flags set";
- return Z_DATA_ERROR;
- }
- max = flags & 0x1f;
- if (max < 9 || max > 16) {
- strm->msg = (char *)"lzw bits out of range";
- return Z_DATA_ERROR;
- }
- if (max == 9) /* 9 doesn't really mean 9 */
- max = 10;
- flags &= 0x80; /* true if block compress */
-
- /* clear table */
- bits = 9;
- mask = 0x1ff;
- end = flags ? 256 : 255;
-
- /* set up: get first 9-bit code, which is the first decompressed byte, but
- don't create a table entry until the next code */
- if (NEXT() == -1) /* no compressed data is ok */
- return Z_OK;
- final = prev = (unsigned)last; /* low 8 bits of code */
- if (NEXT() == -1) /* missing a bit */
- return Z_BUF_ERROR;
- if (last & 1) { /* code must be < 256 */
- strm->msg = (char *)"invalid lzw code";
- return Z_DATA_ERROR;
- }
- rem = (unsigned)last >> 1; /* remaining 7 bits */
- left = 7;
- chunk = bits - 2; /* 7 bytes left in this chunk */
- outbuf[0] = (unsigned char)final; /* write first decompressed byte */
- outcnt = 1;
-
- /* decode codes */
- stack = 0;
- for (;;) {
- /* if the table will be full after this, increment the code size */
- if (end >= mask && bits < max) {
- FLUSHCODE();
- bits++;
- mask <<= 1;
- mask++;
- }
-
- /* get a code of length bits */
- if (chunk == 0) /* decrement chunk modulo bits */
- chunk = bits;
- code = rem; /* low bits of code */
- if (NEXT() == -1) { /* EOF is end of compressed data */
- /* write remaining buffered output */
- if (outcnt && out(&outd, outbuf, outcnt)) {
- strm->next_in = outbuf; /* signal write error */
- return Z_BUF_ERROR;
- }
- return Z_OK;
- }
- code += (unsigned)last << left; /* middle (or high) bits of code */
- left += 8;
- chunk--;
- if (bits > left) { /* need more bits */
- if (NEXT() == -1) /* can't end in middle of code */
- return Z_BUF_ERROR;
- code += (unsigned)last << left; /* high bits of code */
- left += 8;
- chunk--;
- }
- code &= mask; /* mask to current code length */
- left -= bits; /* number of unused bits */
- rem = (unsigned)last >> (8 - left); /* unused bits from last byte */
-
- /* process clear code (256) */
- if (code == 256 && flags) {
- FLUSHCODE();
- bits = 9; /* initialize bits and mask */
- mask = 0x1ff;
- end = 255; /* empty table */
- continue; /* get next code */
- }
-
- /* special code to reuse last match */
- temp = code; /* save the current code */
- if (code > end) {
- /* Be picky on the allowed code here, and make sure that the code
- we drop through (prev) will be a valid index so that random
- input does not cause an exception. The code != end + 1 check is
- empirically derived, and not checked in the original uncompress
- code. If this ever causes a problem, that check could be safely
- removed. Leaving this check in greatly improves gun's ability
- to detect random or corrupted input after a compress header.
- In any case, the prev > end check must be retained. */
- if (code != end + 1 || prev > end) {
- strm->msg = (char *)"invalid lzw code";
- return Z_DATA_ERROR;
- }
- match[stack++] = (unsigned char)final;
- code = prev;
- }
-
- /* walk through linked list to generate output in reverse order */
- p = match + stack;
- while (code >= 256) {
- *p++ = suffix[code];
- code = prefix[code];
- }
- stack = p - match;
- match[stack++] = (unsigned char)code;
- final = code;
-
- /* link new table entry */
- if (end < mask) {
- end++;
- prefix[end] = (unsigned short)prev;
- suffix[end] = (unsigned char)final;
- }
-
- /* set previous code for next iteration */
- prev = temp;
-
- /* write output in forward order */
- while (stack > SIZE - outcnt) {
- while (outcnt < SIZE)
- outbuf[outcnt++] = match[--stack];
- if (out(&outd, outbuf, outcnt)) {
- strm->next_in = outbuf; /* signal write error */
- return Z_BUF_ERROR;
- }
- outcnt = 0;
- }
- p = match + stack;
- do {
- outbuf[outcnt++] = *--p;
- } while (p > match);
- stack = 0;
-
- /* loop for next code with final and prev as the last match, rem and
- left provide the first 0..7 bits of the next code, end is the last
- valid table entry */
- }
-}
-
-/* Decompress a gzip file from infile to outfile. strm is assumed to have been
- successfully initialized with inflateBackInit(). The input file may consist
- of a series of gzip streams, in which case all of them will be decompressed
- to the output file. If outfile is -1, then the gzip stream(s) integrity is
- checked and nothing is written.
-
- The return value is a zlib error code: Z_MEM_ERROR if out of memory,
- Z_DATA_ERROR if the header or the compressed data is invalid, or if the
- trailer CRC-32 check or length doesn't match, Z_BUF_ERROR if the input ends
- prematurely or a write error occurs, or Z_ERRNO if junk (not a another gzip
- stream) follows a valid gzip stream.
- */
-local int gunpipe(z_stream *strm, int infile, int outfile)
-{
- int ret, first, last;
- unsigned have, flags, len;
- z_const unsigned char *next = NULL;
- struct ind ind, *indp;
- struct outd outd;
-
- /* setup input buffer */
- ind.infile = infile;
- ind.inbuf = inbuf;
- indp = &ind;
-
- /* decompress concatenated gzip streams */
- have = 0; /* no input data read in yet */
- first = 1; /* looking for first gzip header */
- strm->next_in = Z_NULL; /* so Z_BUF_ERROR means EOF */
- for (;;) {
- /* look for the two magic header bytes for a gzip stream */
- if (NEXT() == -1) {
- ret = Z_OK;
- break; /* empty gzip stream is ok */
- }
- if (last != 31 || (NEXT() != 139 && last != 157)) {
- strm->msg = (char *)"incorrect header check";
- ret = first ? Z_DATA_ERROR : Z_ERRNO;
- break; /* not a gzip or compress header */
- }
- first = 0; /* next non-header is junk */
-
- /* process a compress (LZW) file -- can't be concatenated after this */
- if (last == 157) {
- ret = lunpipe(have, next, indp, outfile, strm);
- break;
- }
-
- /* process remainder of gzip header */
- ret = Z_BUF_ERROR;
- if (NEXT() != 8) { /* only deflate method allowed */
- if (last == -1) break;
- strm->msg = (char *)"unknown compression method";
- ret = Z_DATA_ERROR;
- break;
- }
- flags = NEXT(); /* header flags */
- NEXT(); /* discard mod time, xflgs, os */
- NEXT();
- NEXT();
- NEXT();
- NEXT();
- NEXT();
- if (last == -1) break;
- if (flags & 0xe0) {
- strm->msg = (char *)"unknown header flags set";
- ret = Z_DATA_ERROR;
- break;
- }
- if (flags & 4) { /* extra field */
- len = NEXT();
- len += (unsigned)(NEXT()) << 8;
- if (last == -1) break;
- while (len > have) {
- len -= have;
- have = 0;
- if (NEXT() == -1) break;
- len--;
- }
- if (last == -1) break;
- have -= len;
- next += len;
- }
- if (flags & 8) /* file name */
- while (NEXT() != 0 && last != -1)
- ;
- if (flags & 16) /* comment */
- while (NEXT() != 0 && last != -1)
- ;
- if (flags & 2) { /* header crc */
- NEXT();
- NEXT();
- }
- if (last == -1) break;
-
- /* set up output */
- outd.outfile = outfile;
- outd.check = 1;
- outd.crc = crc32(0L, Z_NULL, 0);
- outd.total = 0;
-
- /* decompress data to output */
- strm->next_in = next;
- strm->avail_in = have;
- ret = inflateBack(strm, in, indp, out, &outd);
- if (ret != Z_STREAM_END) break;
- next = strm->next_in;
- have = strm->avail_in;
- strm->next_in = Z_NULL; /* so Z_BUF_ERROR means EOF */
-
- /* check trailer */
- ret = Z_BUF_ERROR;
- if (NEXT() != (int)(outd.crc & 0xff) ||
- NEXT() != (int)((outd.crc >> 8) & 0xff) ||
- NEXT() != (int)((outd.crc >> 16) & 0xff) ||
- NEXT() != (int)((outd.crc >> 24) & 0xff)) {
- /* crc error */
- if (last != -1) {
- strm->msg = (char *)"incorrect data check";
- ret = Z_DATA_ERROR;
- }
- break;
- }
- if (NEXT() != (int)(outd.total & 0xff) ||
- NEXT() != (int)((outd.total >> 8) & 0xff) ||
- NEXT() != (int)((outd.total >> 16) & 0xff) ||
- NEXT() != (int)((outd.total >> 24) & 0xff)) {
- /* length error */
- if (last != -1) {
- strm->msg = (char *)"incorrect length check";
- ret = Z_DATA_ERROR;
- }
- break;
- }
-
- /* go back and look for another gzip stream */
- }
-
- /* clean up and return */
- return ret;
-}
-
-/* Copy file attributes, from -> to, as best we can. This is best effort, so
- no errors are reported. The mode bits, including suid, sgid, and the sticky
- bit are copied (if allowed), the owner's user id and group id are copied
- (again if allowed), and the access and modify times are copied. */
-local void copymeta(char *from, char *to)
-{
- struct stat was;
- struct utimbuf when;
-
- /* get all of from's Unix meta data, return if not a regular file */
- if (stat(from, &was) != 0 || (was.st_mode & S_IFMT) != S_IFREG)
- return;
-
- /* set to's mode bits, ignore errors */
- (void)chmod(to, was.st_mode & 07777);
-
- /* copy owner's user and group, ignore errors */
- (void)chown(to, was.st_uid, was.st_gid);
-
- /* copy access and modify times, ignore errors */
- when.actime = was.st_atime;
- when.modtime = was.st_mtime;
- (void)utime(to, &when);
-}
-
-/* Decompress the file inname to the file outnname, of if test is true, just
- decompress without writing and check the gzip trailer for integrity. If
- inname is NULL or an empty string, read from stdin. If outname is NULL or
- an empty string, write to stdout. strm is a pre-initialized inflateBack
- structure. When appropriate, copy the file attributes from inname to
- outname.
-
- gunzip() returns 1 if there is an out-of-memory error or an unexpected
- return code from gunpipe(). Otherwise it returns 0.
- */
-local int gunzip(z_stream *strm, char *inname, char *outname, int test)
-{
- int ret;
- int infile, outfile;
-
- /* open files */
- if (inname == NULL || *inname == 0) {
- inname = "-";
- infile = 0; /* stdin */
- }
- else {
- infile = open(inname, O_RDONLY, 0);
- if (infile == -1) {
- fprintf(stderr, "gun cannot open %s\n", inname);
- return 0;
- }
- }
- if (test)
- outfile = -1;
- else if (outname == NULL || *outname == 0) {
- outname = "-";
- outfile = 1; /* stdout */
- }
- else {
- outfile = open(outname, O_CREAT | O_TRUNC | O_WRONLY, 0666);
- if (outfile == -1) {
- close(infile);
- fprintf(stderr, "gun cannot create %s\n", outname);
- return 0;
- }
- }
- errno = 0;
-
- /* decompress */
- ret = gunpipe(strm, infile, outfile);
- if (outfile > 2) close(outfile);
- if (infile > 2) close(infile);
-
- /* interpret result */
- switch (ret) {
- case Z_OK:
- case Z_ERRNO:
- if (infile > 2 && outfile > 2) {
- copymeta(inname, outname); /* copy attributes */
- unlink(inname);
- }
- if (ret == Z_ERRNO)
- fprintf(stderr, "gun warning: trailing garbage ignored in %s\n",
- inname);
- break;
- case Z_DATA_ERROR:
- if (outfile > 2) unlink(outname);
- fprintf(stderr, "gun data error on %s: %s\n", inname, strm->msg);
- break;
- case Z_MEM_ERROR:
- if (outfile > 2) unlink(outname);
- fprintf(stderr, "gun out of memory error--aborting\n");
- return 1;
- case Z_BUF_ERROR:
- if (outfile > 2) unlink(outname);
- if (strm->next_in != Z_NULL) {
- fprintf(stderr, "gun write error on %s: %s\n",
- outname, strerror(errno));
- }
- else if (errno) {
- fprintf(stderr, "gun read error on %s: %s\n",
- inname, strerror(errno));
- }
- else {
- fprintf(stderr, "gun unexpected end of file on %s\n",
- inname);
- }
- break;
- default:
- if (outfile > 2) unlink(outname);
- fprintf(stderr, "gun internal error--aborting\n");
- return 1;
- }
- return 0;
-}
-
-/* Process the gun command line arguments. See the command syntax near the
- beginning of this source file. */
-int main(int argc, char **argv)
-{
- int ret, len, test;
- char *outname;
- unsigned char *window;
- z_stream strm;
-
- /* initialize inflateBack state for repeated use */
- window = match; /* reuse LZW match buffer */
- strm.zalloc = Z_NULL;
- strm.zfree = Z_NULL;
- strm.opaque = Z_NULL;
- ret = inflateBackInit(&strm, 15, window);
- if (ret != Z_OK) {
- fprintf(stderr, "gun out of memory error--aborting\n");
- return 1;
- }
-
- /* decompress each file to the same name with the suffix removed */
- argc--;
- argv++;
- test = 0;
- if (argc && strcmp(*argv, "-h") == 0) {
- fprintf(stderr, "gun 1.6 (17 Jan 2010)\n");
- fprintf(stderr, "Copyright (C) 2003-2010 Mark Adler\n");
- fprintf(stderr, "usage: gun [-t] [file1.gz [file2.Z ...]]\n");
- return 0;
- }
- if (argc && strcmp(*argv, "-t") == 0) {
- test = 1;
- argc--;
- argv++;
- }
- if (argc)
- do {
- if (test)
- outname = NULL;
- else {
- len = (int)strlen(*argv);
- if (strcmp(*argv + len - 3, ".gz") == 0 ||
- strcmp(*argv + len - 3, "-gz") == 0)
- len -= 3;
- else if (strcmp(*argv + len - 2, ".z") == 0 ||
- strcmp(*argv + len - 2, "-z") == 0 ||
- strcmp(*argv + len - 2, "_z") == 0 ||
- strcmp(*argv + len - 2, ".Z") == 0)
- len -= 2;
- else {
- fprintf(stderr, "gun error: no gz type on %s--skipping\n",
- *argv);
- continue;
- }
- outname = malloc(len + 1);
- if (outname == NULL) {
- fprintf(stderr, "gun out of memory error--aborting\n");
- ret = 1;
- break;
- }
- memcpy(outname, *argv, len);
- outname[len] = 0;
- }
- ret = gunzip(&strm, *argv, outname, test);
- if (outname != NULL) free(outname);
- if (ret) break;
- } while (argv++, --argc);
- else
- ret = gunzip(&strm, NULL, NULL, test);
-
- /* clean up */
- inflateBackEnd(&strm);
- return ret;
-}
diff --git a/contrib/zlib/examples/gzappend.c b/contrib/zlib/examples/gzappend.c
deleted file mode 100644
index 662dec3..0000000
--- a/contrib/zlib/examples/gzappend.c
+++ /dev/null
@@ -1,504 +0,0 @@
-/* gzappend -- command to append to a gzip file
-
- Copyright (C) 2003, 2012 Mark Adler, all rights reserved
- version 1.2, 11 Oct 2012
-
- This software is provided 'as-is', without any express or implied
- warranty. In no event will the author be held liable for any damages
- arising from the use of this software.
-
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it
- freely, subject to the following restrictions:
-
- 1. The origin of this software must not be misrepresented; you must not
- claim that you wrote the original software. If you use this software
- in a product, an acknowledgment in the product documentation would be
- appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
-
- Mark Adler madler@alumni.caltech.edu
- */
-
-/*
- * Change history:
- *
- * 1.0 19 Oct 2003 - First version
- * 1.1 4 Nov 2003 - Expand and clarify some comments and notes
- * - Add version and copyright to help
- * - Send help to stdout instead of stderr
- * - Add some preemptive typecasts
- * - Add L to constants in lseek() calls
- * - Remove some debugging information in error messages
- * - Use new data_type definition for zlib 1.2.1
- * - Simplfy and unify file operations
- * - Finish off gzip file in gztack()
- * - Use deflatePrime() instead of adding empty blocks
- * - Keep gzip file clean on appended file read errors
- * - Use in-place rotate instead of auxiliary buffer
- * (Why you ask? Because it was fun to write!)
- * 1.2 11 Oct 2012 - Fix for proper z_const usage
- * - Check for input buffer malloc failure
- */
-
-/*
- gzappend takes a gzip file and appends to it, compressing files from the
- command line or data from stdin. The gzip file is written to directly, to
- avoid copying that file, in case it's large. Note that this results in the
- unfriendly behavior that if gzappend fails, the gzip file is corrupted.
-
- This program was written to illustrate the use of the new Z_BLOCK option of
- zlib 1.2.x's inflate() function. This option returns from inflate() at each
- block boundary to facilitate locating and modifying the last block bit at
- the start of the final deflate block. Also whether using Z_BLOCK or not,
- another required feature of zlib 1.2.x is that inflate() now provides the
- number of unusued bits in the last input byte used. gzappend will not work
- with versions of zlib earlier than 1.2.1.
-
- gzappend first decompresses the gzip file internally, discarding all but
- the last 32K of uncompressed data, and noting the location of the last block
- bit and the number of unused bits in the last byte of the compressed data.
- The gzip trailer containing the CRC-32 and length of the uncompressed data
- is verified. This trailer will be later overwritten.
-
- Then the last block bit is cleared by seeking back in the file and rewriting
- the byte that contains it. Seeking forward, the last byte of the compressed
- data is saved along with the number of unused bits to initialize deflate.
-
- A deflate process is initialized, using the last 32K of the uncompressed
- data from the gzip file to initialize the dictionary. If the total
- uncompressed data was less than 32K, then all of it is used to initialize
- the dictionary. The deflate output bit buffer is also initialized with the
- last bits from the original deflate stream. From here on, the data to
- append is simply compressed using deflate, and written to the gzip file.
- When that is complete, the new CRC-32 and uncompressed length are written
- as the trailer of the gzip file.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <fcntl.h>
-#include <unistd.h>
-#include "zlib.h"
-
-#define local static
-#define LGCHUNK 14
-#define CHUNK (1U << LGCHUNK)
-#define DSIZE 32768U
-
-/* print an error message and terminate with extreme prejudice */
-local void bye(char *msg1, char *msg2)
-{
- fprintf(stderr, "gzappend error: %s%s\n", msg1, msg2);
- exit(1);
-}
-
-/* return the greatest common divisor of a and b using Euclid's algorithm,
- modified to be fast when one argument much greater than the other, and
- coded to avoid unnecessary swapping */
-local unsigned gcd(unsigned a, unsigned b)
-{
- unsigned c;
-
- while (a && b)
- if (a > b) {
- c = b;
- while (a - c >= c)
- c <<= 1;
- a -= c;
- }
- else {
- c = a;
- while (b - c >= c)
- c <<= 1;
- b -= c;
- }
- return a + b;
-}
-
-/* rotate list[0..len-1] left by rot positions, in place */
-local void rotate(unsigned char *list, unsigned len, unsigned rot)
-{
- unsigned char tmp;
- unsigned cycles;
- unsigned char *start, *last, *to, *from;
-
- /* normalize rot and handle degenerate cases */
- if (len < 2) return;
- if (rot >= len) rot %= len;
- if (rot == 0) return;
-
- /* pointer to last entry in list */
- last = list + (len - 1);
-
- /* do simple left shift by one */
- if (rot == 1) {
- tmp = *list;
- memcpy(list, list + 1, len - 1);
- *last = tmp;
- return;
- }
-
- /* do simple right shift by one */
- if (rot == len - 1) {
- tmp = *last;
- memmove(list + 1, list, len - 1);
- *list = tmp;
- return;
- }
-
- /* otherwise do rotate as a set of cycles in place */
- cycles = gcd(len, rot); /* number of cycles */
- do {
- start = from = list + cycles; /* start index is arbitrary */
- tmp = *from; /* save entry to be overwritten */
- for (;;) {
- to = from; /* next step in cycle */
- from += rot; /* go right rot positions */
- if (from > last) from -= len; /* (pointer better not wrap) */
- if (from == start) break; /* all but one shifted */
- *to = *from; /* shift left */
- }
- *to = tmp; /* complete the circle */
- } while (--cycles);
-}
-
-/* structure for gzip file read operations */
-typedef struct {
- int fd; /* file descriptor */
- int size; /* 1 << size is bytes in buf */
- unsigned left; /* bytes available at next */
- unsigned char *buf; /* buffer */
- z_const unsigned char *next; /* next byte in buffer */
- char *name; /* file name for error messages */
-} file;
-
-/* reload buffer */
-local int readin(file *in)
-{
- int len;
-
- len = read(in->fd, in->buf, 1 << in->size);
- if (len == -1) bye("error reading ", in->name);
- in->left = (unsigned)len;
- in->next = in->buf;
- return len;
-}
-
-/* read from file in, exit if end-of-file */
-local int readmore(file *in)
-{
- if (readin(in) == 0) bye("unexpected end of ", in->name);
- return 0;
-}
-
-#define read1(in) (in->left == 0 ? readmore(in) : 0, \
- in->left--, *(in->next)++)
-
-/* skip over n bytes of in */
-local void skip(file *in, unsigned n)
-{
- unsigned bypass;
-
- if (n > in->left) {
- n -= in->left;
- bypass = n & ~((1U << in->size) - 1);
- if (bypass) {
- if (lseek(in->fd, (off_t)bypass, SEEK_CUR) == -1)
- bye("seeking ", in->name);
- n -= bypass;
- }
- readmore(in);
- if (n > in->left)
- bye("unexpected end of ", in->name);
- }
- in->left -= n;
- in->next += n;
-}
-
-/* read a four-byte unsigned integer, little-endian, from in */
-unsigned long read4(file *in)
-{
- unsigned long val;
-
- val = read1(in);
- val += (unsigned)read1(in) << 8;
- val += (unsigned long)read1(in) << 16;
- val += (unsigned long)read1(in) << 24;
- return val;
-}
-
-/* skip over gzip header */
-local void gzheader(file *in)
-{
- int flags;
- unsigned n;
-
- if (read1(in) != 31 || read1(in) != 139) bye(in->name, " not a gzip file");
- if (read1(in) != 8) bye("unknown compression method in", in->name);
- flags = read1(in);
- if (flags & 0xe0) bye("unknown header flags set in", in->name);
- skip(in, 6);
- if (flags & 4) {
- n = read1(in);
- n += (unsigned)(read1(in)) << 8;
- skip(in, n);
- }
- if (flags & 8) while (read1(in) != 0) ;
- if (flags & 16) while (read1(in) != 0) ;
- if (flags & 2) skip(in, 2);
-}
-
-/* decompress gzip file "name", return strm with a deflate stream ready to
- continue compression of the data in the gzip file, and return a file
- descriptor pointing to where to write the compressed data -- the deflate
- stream is initialized to compress using level "level" */
-local int gzscan(char *name, z_stream *strm, int level)
-{
- int ret, lastbit, left, full;
- unsigned have;
- unsigned long crc, tot;
- unsigned char *window;
- off_t lastoff, end;
- file gz;
-
- /* open gzip file */
- gz.name = name;
- gz.fd = open(name, O_RDWR, 0);
- if (gz.fd == -1) bye("cannot open ", name);
- gz.buf = malloc(CHUNK);
- if (gz.buf == NULL) bye("out of memory", "");
- gz.size = LGCHUNK;
- gz.left = 0;
-
- /* skip gzip header */
- gzheader(&gz);
-
- /* prepare to decompress */
- window = malloc(DSIZE);
- if (window == NULL) bye("out of memory", "");
- strm->zalloc = Z_NULL;
- strm->zfree = Z_NULL;
- strm->opaque = Z_NULL;
- ret = inflateInit2(strm, -15);
- if (ret != Z_OK) bye("out of memory", " or library mismatch");
-
- /* decompress the deflate stream, saving append information */
- lastbit = 0;
- lastoff = lseek(gz.fd, 0L, SEEK_CUR) - gz.left;
- left = 0;
- strm->avail_in = gz.left;
- strm->next_in = gz.next;
- crc = crc32(0L, Z_NULL, 0);
- have = full = 0;
- do {
- /* if needed, get more input */
- if (strm->avail_in == 0) {
- readmore(&gz);
- strm->avail_in = gz.left;
- strm->next_in = gz.next;
- }
-
- /* set up output to next available section of sliding window */
- strm->avail_out = DSIZE - have;
- strm->next_out = window + have;
-
- /* inflate and check for errors */
- ret = inflate(strm, Z_BLOCK);
- if (ret == Z_STREAM_ERROR) bye("internal stream error!", "");
- if (ret == Z_MEM_ERROR) bye("out of memory", "");
- if (ret == Z_DATA_ERROR)
- bye("invalid compressed data--format violated in", name);
-
- /* update crc and sliding window pointer */
- crc = crc32(crc, window + have, DSIZE - have - strm->avail_out);
- if (strm->avail_out)
- have = DSIZE - strm->avail_out;
- else {
- have = 0;
- full = 1;
- }
-
- /* process end of block */
- if (strm->data_type & 128) {
- if (strm->data_type & 64)
- left = strm->data_type & 0x1f;
- else {
- lastbit = strm->data_type & 0x1f;
- lastoff = lseek(gz.fd, 0L, SEEK_CUR) - strm->avail_in;
- }
- }
- } while (ret != Z_STREAM_END);
- inflateEnd(strm);
- gz.left = strm->avail_in;
- gz.next = strm->next_in;
-
- /* save the location of the end of the compressed data */
- end = lseek(gz.fd, 0L, SEEK_CUR) - gz.left;
-
- /* check gzip trailer and save total for deflate */
- if (crc != read4(&gz))
- bye("invalid compressed data--crc mismatch in ", name);
- tot = strm->total_out;
- if ((tot & 0xffffffffUL) != read4(&gz))
- bye("invalid compressed data--length mismatch in", name);
-
- /* if not at end of file, warn */
- if (gz.left || readin(&gz))
- fprintf(stderr,
- "gzappend warning: junk at end of gzip file overwritten\n");
-
- /* clear last block bit */
- lseek(gz.fd, lastoff - (lastbit != 0), SEEK_SET);
- if (read(gz.fd, gz.buf, 1) != 1) bye("reading after seek on ", name);
- *gz.buf = (unsigned char)(*gz.buf ^ (1 << ((8 - lastbit) & 7)));
- lseek(gz.fd, -1L, SEEK_CUR);
- if (write(gz.fd, gz.buf, 1) != 1) bye("writing after seek to ", name);
-
- /* if window wrapped, build dictionary from window by rotating */
- if (full) {
- rotate(window, DSIZE, have);
- have = DSIZE;
- }
-
- /* set up deflate stream with window, crc, total_in, and leftover bits */
- ret = deflateInit2(strm, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
- if (ret != Z_OK) bye("out of memory", "");
- deflateSetDictionary(strm, window, have);
- strm->adler = crc;
- strm->total_in = tot;
- if (left) {
- lseek(gz.fd, --end, SEEK_SET);
- if (read(gz.fd, gz.buf, 1) != 1) bye("reading after seek on ", name);
- deflatePrime(strm, 8 - left, *gz.buf);
- }
- lseek(gz.fd, end, SEEK_SET);
-
- /* clean up and return */
- free(window);
- free(gz.buf);
- return gz.fd;
-}
-
-/* append file "name" to gzip file gd using deflate stream strm -- if last
- is true, then finish off the deflate stream at the end */
-local void gztack(char *name, int gd, z_stream *strm, int last)
-{
- int fd, len, ret;
- unsigned left;
- unsigned char *in, *out;
-
- /* open file to compress and append */
- fd = 0;
- if (name != NULL) {
- fd = open(name, O_RDONLY, 0);
- if (fd == -1)
- fprintf(stderr, "gzappend warning: %s not found, skipping ...\n",
- name);
- }
-
- /* allocate buffers */
- in = malloc(CHUNK);
- out = malloc(CHUNK);
- if (in == NULL || out == NULL) bye("out of memory", "");
-
- /* compress input file and append to gzip file */
- do {
- /* get more input */
- len = read(fd, in, CHUNK);
- if (len == -1) {
- fprintf(stderr,
- "gzappend warning: error reading %s, skipping rest ...\n",
- name);
- len = 0;
- }
- strm->avail_in = (unsigned)len;
- strm->next_in = in;
- if (len) strm->adler = crc32(strm->adler, in, (unsigned)len);
-
- /* compress and write all available output */
- do {
- strm->avail_out = CHUNK;
- strm->next_out = out;
- ret = deflate(strm, last && len == 0 ? Z_FINISH : Z_NO_FLUSH);
- left = CHUNK - strm->avail_out;
- while (left) {
- len = write(gd, out + CHUNK - strm->avail_out - left, left);
- if (len == -1) bye("writing gzip file", "");
- left -= (unsigned)len;
- }
- } while (strm->avail_out == 0 && ret != Z_STREAM_END);
- } while (len != 0);
-
- /* write trailer after last entry */
- if (last) {
- deflateEnd(strm);
- out[0] = (unsigned char)(strm->adler);
- out[1] = (unsigned char)(strm->adler >> 8);
- out[2] = (unsigned char)(strm->adler >> 16);
- out[3] = (unsigned char)(strm->adler >> 24);
- out[4] = (unsigned char)(strm->total_in);
- out[5] = (unsigned char)(strm->total_in >> 8);
- out[6] = (unsigned char)(strm->total_in >> 16);
- out[7] = (unsigned char)(strm->total_in >> 24);
- len = 8;
- do {
- ret = write(gd, out + 8 - len, len);
- if (ret == -1) bye("writing gzip file", "");
- len -= ret;
- } while (len);
- close(gd);
- }
-
- /* clean up and return */
- free(out);
- free(in);
- if (fd > 0) close(fd);
-}
-
-/* process the compression level option if present, scan the gzip file, and
- append the specified files, or append the data from stdin if no other file
- names are provided on the command line -- the gzip file must be writable
- and seekable */
-int main(int argc, char **argv)
-{
- int gd, level;
- z_stream strm;
-
- /* ignore command name */
- argc--; argv++;
-
- /* provide usage if no arguments */
- if (*argv == NULL) {
- printf(
- "gzappend 1.2 (11 Oct 2012) Copyright (C) 2003, 2012 Mark Adler\n"
- );
- printf(
- "usage: gzappend [-level] file.gz [ addthis [ andthis ... ]]\n");
- return 0;
- }
-
- /* set compression level */
- level = Z_DEFAULT_COMPRESSION;
- if (argv[0][0] == '-') {
- if (argv[0][1] < '0' || argv[0][1] > '9' || argv[0][2] != 0)
- bye("invalid compression level", "");
- level = argv[0][1] - '0';
- if (*++argv == NULL) bye("no gzip file name after options", "");
- }
-
- /* prepare to append to gzip file */
- gd = gzscan(*argv++, &strm, level);
-
- /* append files on command line, or from stdin if none */
- if (*argv == NULL)
- gztack(NULL, gd, &strm, 1);
- else
- do {
- gztack(*argv, gd, &strm, argv[1] == NULL);
- } while (*++argv != NULL);
- return 0;
-}
diff --git a/contrib/zlib/examples/gzjoin.c b/contrib/zlib/examples/gzjoin.c
deleted file mode 100644
index 89e8098..0000000
--- a/contrib/zlib/examples/gzjoin.c
+++ /dev/null
@@ -1,449 +0,0 @@
-/* gzjoin -- command to join gzip files into one gzip file
-
- Copyright (C) 2004, 2005, 2012 Mark Adler, all rights reserved
- version 1.2, 14 Aug 2012
-
- This software is provided 'as-is', without any express or implied
- warranty. In no event will the author be held liable for any damages
- arising from the use of this software.
-
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it
- freely, subject to the following restrictions:
-
- 1. The origin of this software must not be misrepresented; you must not
- claim that you wrote the original software. If you use this software
- in a product, an acknowledgment in the product documentation would be
- appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
-
- Mark Adler madler@alumni.caltech.edu
- */
-
-/*
- * Change history:
- *
- * 1.0 11 Dec 2004 - First version
- * 1.1 12 Jun 2005 - Changed ssize_t to long for portability
- * 1.2 14 Aug 2012 - Clean up for z_const usage
- */
-
-/*
- gzjoin takes one or more gzip files on the command line and writes out a
- single gzip file that will uncompress to the concatenation of the
- uncompressed data from the individual gzip files. gzjoin does this without
- having to recompress any of the data and without having to calculate a new
- crc32 for the concatenated uncompressed data. gzjoin does however have to
- decompress all of the input data in order to find the bits in the compressed
- data that need to be modified to concatenate the streams.
-
- gzjoin does not do an integrity check on the input gzip files other than
- checking the gzip header and decompressing the compressed data. They are
- otherwise assumed to be complete and correct.
-
- Each joint between gzip files removes at least 18 bytes of previous trailer
- and subsequent header, and inserts an average of about three bytes to the
- compressed data in order to connect the streams. The output gzip file
- has a minimal ten-byte gzip header with no file name or modification time.
-
- This program was written to illustrate the use of the Z_BLOCK option of
- inflate() and the crc32_combine() function. gzjoin will not compile with
- versions of zlib earlier than 1.2.3.
- */
-
-#include <stdio.h> /* fputs(), fprintf(), fwrite(), putc() */
-#include <stdlib.h> /* exit(), malloc(), free() */
-#include <fcntl.h> /* open() */
-#include <unistd.h> /* close(), read(), lseek() */
-#include "zlib.h"
- /* crc32(), crc32_combine(), inflateInit2(), inflate(), inflateEnd() */
-
-#define local static
-
-/* exit with an error (return a value to allow use in an expression) */
-local int bail(char *why1, char *why2)
-{
- fprintf(stderr, "gzjoin error: %s%s, output incomplete\n", why1, why2);
- exit(1);
- return 0;
-}
-
-/* -- simple buffered file input with access to the buffer -- */
-
-#define CHUNK 32768 /* must be a power of two and fit in unsigned */
-
-/* bin buffered input file type */
-typedef struct {
- char *name; /* name of file for error messages */
- int fd; /* file descriptor */
- unsigned left; /* bytes remaining at next */
- unsigned char *next; /* next byte to read */
- unsigned char *buf; /* allocated buffer of length CHUNK */
-} bin;
-
-/* close a buffered file and free allocated memory */
-local void bclose(bin *in)
-{
- if (in != NULL) {
- if (in->fd != -1)
- close(in->fd);
- if (in->buf != NULL)
- free(in->buf);
- free(in);
- }
-}
-
-/* open a buffered file for input, return a pointer to type bin, or NULL on
- failure */
-local bin *bopen(char *name)
-{
- bin *in;
-
- in = malloc(sizeof(bin));
- if (in == NULL)
- return NULL;
- in->buf = malloc(CHUNK);
- in->fd = open(name, O_RDONLY, 0);
- if (in->buf == NULL || in->fd == -1) {
- bclose(in);
- return NULL;
- }
- in->left = 0;
- in->next = in->buf;
- in->name = name;
- return in;
-}
-
-/* load buffer from file, return -1 on read error, 0 or 1 on success, with
- 1 indicating that end-of-file was reached */
-local int bload(bin *in)
-{
- long len;
-
- if (in == NULL)
- return -1;
- if (in->left != 0)
- return 0;
- in->next = in->buf;
- do {
- len = (long)read(in->fd, in->buf + in->left, CHUNK - in->left);
- if (len < 0)
- return -1;
- in->left += (unsigned)len;
- } while (len != 0 && in->left < CHUNK);
- return len == 0 ? 1 : 0;
-}
-
-/* get a byte from the file, bail if end of file */
-#define bget(in) (in->left ? 0 : bload(in), \
- in->left ? (in->left--, *(in->next)++) : \
- bail("unexpected end of file on ", in->name))
-
-/* get a four-byte little-endian unsigned integer from file */
-local unsigned long bget4(bin *in)
-{
- unsigned long val;
-
- val = bget(in);
- val += (unsigned long)(bget(in)) << 8;
- val += (unsigned long)(bget(in)) << 16;
- val += (unsigned long)(bget(in)) << 24;
- return val;
-}
-
-/* skip bytes in file */
-local void bskip(bin *in, unsigned skip)
-{
- /* check pointer */
- if (in == NULL)
- return;
-
- /* easy case -- skip bytes in buffer */
- if (skip <= in->left) {
- in->left -= skip;
- in->next += skip;
- return;
- }
-
- /* skip what's in buffer, discard buffer contents */
- skip -= in->left;
- in->left = 0;
-
- /* seek past multiples of CHUNK bytes */
- if (skip > CHUNK) {
- unsigned left;
-
- left = skip & (CHUNK - 1);
- if (left == 0) {
- /* exact number of chunks: seek all the way minus one byte to check
- for end-of-file with a read */
- lseek(in->fd, skip - 1, SEEK_CUR);
- if (read(in->fd, in->buf, 1) != 1)
- bail("unexpected end of file on ", in->name);
- return;
- }
-
- /* skip the integral chunks, update skip with remainder */
- lseek(in->fd, skip - left, SEEK_CUR);
- skip = left;
- }
-
- /* read more input and skip remainder */
- bload(in);
- if (skip > in->left)
- bail("unexpected end of file on ", in->name);
- in->left -= skip;
- in->next += skip;
-}
-
-/* -- end of buffered input functions -- */
-
-/* skip the gzip header from file in */
-local void gzhead(bin *in)
-{
- int flags;
-
- /* verify gzip magic header and compression method */
- if (bget(in) != 0x1f || bget(in) != 0x8b || bget(in) != 8)
- bail(in->name, " is not a valid gzip file");
-
- /* get and verify flags */
- flags = bget(in);
- if ((flags & 0xe0) != 0)
- bail("unknown reserved bits set in ", in->name);
-
- /* skip modification time, extra flags, and os */
- bskip(in, 6);
-
- /* skip extra field if present */
- if (flags & 4) {
- unsigned len;
-
- len = bget(in);
- len += (unsigned)(bget(in)) << 8;
- bskip(in, len);
- }
-
- /* skip file name if present */
- if (flags & 8)
- while (bget(in) != 0)
- ;
-
- /* skip comment if present */
- if (flags & 16)
- while (bget(in) != 0)
- ;
-
- /* skip header crc if present */
- if (flags & 2)
- bskip(in, 2);
-}
-
-/* write a four-byte little-endian unsigned integer to out */
-local void put4(unsigned long val, FILE *out)
-{
- putc(val & 0xff, out);
- putc((val >> 8) & 0xff, out);
- putc((val >> 16) & 0xff, out);
- putc((val >> 24) & 0xff, out);
-}
-
-/* Load up zlib stream from buffered input, bail if end of file */
-local void zpull(z_streamp strm, bin *in)
-{
- if (in->left == 0)
- bload(in);
- if (in->left == 0)
- bail("unexpected end of file on ", in->name);
- strm->avail_in = in->left;
- strm->next_in = in->next;
-}
-
-/* Write header for gzip file to out and initialize trailer. */
-local void gzinit(unsigned long *crc, unsigned long *tot, FILE *out)
-{
- fwrite("\x1f\x8b\x08\0\0\0\0\0\0\xff", 1, 10, out);
- *crc = crc32(0L, Z_NULL, 0);
- *tot = 0;
-}
-
-/* Copy the compressed data from name, zeroing the last block bit of the last
- block if clr is true, and adding empty blocks as needed to get to a byte
- boundary. If clr is false, then the last block becomes the last block of
- the output, and the gzip trailer is written. crc and tot maintains the
- crc and length (modulo 2^32) of the output for the trailer. The resulting
- gzip file is written to out. gzinit() must be called before the first call
- of gzcopy() to write the gzip header and to initialize crc and tot. */
-local void gzcopy(char *name, int clr, unsigned long *crc, unsigned long *tot,
- FILE *out)
-{
- int ret; /* return value from zlib functions */
- int pos; /* where the "last block" bit is in byte */
- int last; /* true if processing the last block */
- bin *in; /* buffered input file */
- unsigned char *start; /* start of compressed data in buffer */
- unsigned char *junk; /* buffer for uncompressed data -- discarded */
- z_off_t len; /* length of uncompressed data (support > 4 GB) */
- z_stream strm; /* zlib inflate stream */
-
- /* open gzip file and skip header */
- in = bopen(name);
- if (in == NULL)
- bail("could not open ", name);
- gzhead(in);
-
- /* allocate buffer for uncompressed data and initialize raw inflate
- stream */
- junk = malloc(CHUNK);
- strm.zalloc = Z_NULL;
- strm.zfree = Z_NULL;
- strm.opaque = Z_NULL;
- strm.avail_in = 0;
- strm.next_in = Z_NULL;
- ret = inflateInit2(&strm, -15);
- if (junk == NULL || ret != Z_OK)
- bail("out of memory", "");
-
- /* inflate and copy compressed data, clear last-block bit if requested */
- len = 0;
- zpull(&strm, in);
- start = in->next;
- last = start[0] & 1;
- if (last && clr)
- start[0] &= ~1;
- strm.avail_out = 0;
- for (;;) {
- /* if input used and output done, write used input and get more */
- if (strm.avail_in == 0 && strm.avail_out != 0) {
- fwrite(start, 1, strm.next_in - start, out);
- start = in->buf;
- in->left = 0;
- zpull(&strm, in);
- }
-
- /* decompress -- return early when end-of-block reached */
- strm.avail_out = CHUNK;
- strm.next_out = junk;
- ret = inflate(&strm, Z_BLOCK);
- switch (ret) {
- case Z_MEM_ERROR:
- bail("out of memory", "");
- case Z_DATA_ERROR:
- bail("invalid compressed data in ", in->name);
- }
-
- /* update length of uncompressed data */
- len += CHUNK - strm.avail_out;
-
- /* check for block boundary (only get this when block copied out) */
- if (strm.data_type & 128) {
- /* if that was the last block, then done */
- if (last)
- break;
-
- /* number of unused bits in last byte */
- pos = strm.data_type & 7;
-
- /* find the next last-block bit */
- if (pos != 0) {
- /* next last-block bit is in last used byte */
- pos = 0x100 >> pos;
- last = strm.next_in[-1] & pos;
- if (last && clr)
- in->buf[strm.next_in - in->buf - 1] &= ~pos;
- }
- else {
- /* next last-block bit is in next unused byte */
- if (strm.avail_in == 0) {
- /* don't have that byte yet -- get it */
- fwrite(start, 1, strm.next_in - start, out);
- start = in->buf;
- in->left = 0;
- zpull(&strm, in);
- }
- last = strm.next_in[0] & 1;
- if (last && clr)
- in->buf[strm.next_in - in->buf] &= ~1;
- }
- }
- }
-
- /* update buffer with unused input */
- in->left = strm.avail_in;
- in->next = in->buf + (strm.next_in - in->buf);
-
- /* copy used input, write empty blocks to get to byte boundary */
- pos = strm.data_type & 7;
- fwrite(start, 1, in->next - start - 1, out);
- last = in->next[-1];
- if (pos == 0 || !clr)
- /* already at byte boundary, or last file: write last byte */
- putc(last, out);
- else {
- /* append empty blocks to last byte */
- last &= ((0x100 >> pos) - 1); /* assure unused bits are zero */
- if (pos & 1) {
- /* odd -- append an empty stored block */
- putc(last, out);
- if (pos == 1)
- putc(0, out); /* two more bits in block header */
- fwrite("\0\0\xff\xff", 1, 4, out);
- }
- else {
- /* even -- append 1, 2, or 3 empty fixed blocks */
- switch (pos) {
- case 6:
- putc(last | 8, out);
- last = 0;
- case 4:
- putc(last | 0x20, out);
- last = 0;
- case 2:
- putc(last | 0x80, out);
- putc(0, out);
- }
- }
- }
-
- /* update crc and tot */
- *crc = crc32_combine(*crc, bget4(in), len);
- *tot += (unsigned long)len;
-
- /* clean up */
- inflateEnd(&strm);
- free(junk);
- bclose(in);
-
- /* write trailer if this is the last gzip file */
- if (!clr) {
- put4(*crc, out);
- put4(*tot, out);
- }
-}
-
-/* join the gzip files on the command line, write result to stdout */
-int main(int argc, char **argv)
-{
- unsigned long crc, tot; /* running crc and total uncompressed length */
-
- /* skip command name */
- argc--;
- argv++;
-
- /* show usage if no arguments */
- if (argc == 0) {
- fputs("gzjoin usage: gzjoin f1.gz [f2.gz [f3.gz ...]] > fjoin.gz\n",
- stderr);
- return 0;
- }
-
- /* join gzip files on command line and write to stdout */
- gzinit(&crc, &tot, stdout);
- while (argc--)
- gzcopy(*argv++, argc, &crc, &tot, stdout);
-
- /* done */
- return 0;
-}
diff --git a/contrib/zlib/examples/gzlog.c b/contrib/zlib/examples/gzlog.c
deleted file mode 100644
index b8c2927..0000000
--- a/contrib/zlib/examples/gzlog.c
+++ /dev/null
@@ -1,1059 +0,0 @@
-/*
- * gzlog.c
- * Copyright (C) 2004, 2008, 2012, 2016 Mark Adler, all rights reserved
- * For conditions of distribution and use, see copyright notice in gzlog.h
- * version 2.2, 14 Aug 2012
- */
-
-/*
- gzlog provides a mechanism for frequently appending short strings to a gzip
- file that is efficient both in execution time and compression ratio. The
- strategy is to write the short strings in an uncompressed form to the end of
- the gzip file, only compressing when the amount of uncompressed data has
- reached a given threshold.
-
- gzlog also provides protection against interruptions in the process due to
- system crashes. The status of the operation is recorded in an extra field
- in the gzip file, and is only updated once the gzip file is brought to a
- valid state. The last data to be appended or compressed is saved in an
- auxiliary file, so that if the operation is interrupted, it can be completed
- the next time an append operation is attempted.
-
- gzlog maintains another auxiliary file with the last 32K of data from the
- compressed portion, which is preloaded for the compression of the subsequent
- data. This minimizes the impact to the compression ratio of appending.
- */
-
-/*
- Operations Concept:
-
- Files (log name "foo"):
- foo.gz -- gzip file with the complete log
- foo.add -- last message to append or last data to compress
- foo.dict -- dictionary of the last 32K of data for next compression
- foo.temp -- temporary dictionary file for compression after this one
- foo.lock -- lock file for reading and writing the other files
- foo.repairs -- log file for log file recovery operations (not compressed)
-
- gzip file structure:
- - fixed-length (no file name) header with extra field (see below)
- - compressed data ending initially with empty stored block
- - uncompressed data filling out originally empty stored block and
- subsequent stored blocks as needed (16K max each)
- - gzip trailer
- - no junk at end (no other gzip streams)
-
- When appending data, the information in the first three items above plus the
- foo.add file are sufficient to recover an interrupted append operation. The
- extra field has the necessary information to restore the start of the last
- stored block and determine where to append the data in the foo.add file, as
- well as the crc and length of the gzip data before the append operation.
-
- The foo.add file is created before the gzip file is marked for append, and
- deleted after the gzip file is marked as complete. So if the append
- operation is interrupted, the data to add will still be there. If due to
- some external force, the foo.add file gets deleted between when the append
- operation was interrupted and when recovery is attempted, the gzip file will
- still be restored, but without the appended data.
-
- When compressing data, the information in the first two items above plus the
- foo.add file are sufficient to recover an interrupted compress operation.
- The extra field has the necessary information to find the end of the
- compressed data, and contains both the crc and length of just the compressed
- data and of the complete set of data including the contents of the foo.add
- file.
-
- Again, the foo.add file is maintained during the compress operation in case
- of an interruption. If in the unlikely event the foo.add file with the data
- to be compressed is missing due to some external force, a gzip file with
- just the previous compressed data will be reconstructed. In this case, all
- of the data that was to be compressed is lost (approximately one megabyte).
- This will not occur if all that happened was an interruption of the compress
- operation.
-
- The third state that is marked is the replacement of the old dictionary with
- the new dictionary after a compress operation. Once compression is
- complete, the gzip file is marked as being in the replace state. This
- completes the gzip file, so an interrupt after being so marked does not
- result in recompression. Then the dictionary file is replaced, and the gzip
- file is marked as completed. This state prevents the possibility of
- restarting compression with the wrong dictionary file.
-
- All three operations are wrapped by a lock/unlock procedure. In order to
- gain exclusive access to the log files, first a foo.lock file must be
- exclusively created. When all operations are complete, the lock is
- released by deleting the foo.lock file. If when attempting to create the
- lock file, it already exists and the modify time of the lock file is more
- than five minutes old (set by the PATIENCE define below), then the old
- lock file is considered stale and deleted, and the exclusive creation of
- the lock file is retried. To assure that there are no false assessments
- of the staleness of the lock file, the operations periodically touch the
- lock file to update the modified date.
-
- Following is the definition of the extra field with all of the information
- required to enable the above append and compress operations and their
- recovery if interrupted. Multi-byte values are stored little endian
- (consistent with the gzip format). File pointers are eight bytes long.
- The crc's and lengths for the gzip trailer are four bytes long. (Note that
- the length at the end of a gzip file is used for error checking only, and
- for large files is actually the length modulo 2^32.) The stored block
- length is two bytes long. The gzip extra field two-byte identification is
- "ap" for append. It is assumed that writing the extra field to the file is
- an "atomic" operation. That is, either all of the extra field is written
- to the file, or none of it is, if the operation is interrupted right at the
- point of updating the extra field. This is a reasonable assumption, since
- the extra field is within the first 52 bytes of the file, which is smaller
- than any expected block size for a mass storage device (usually 512 bytes or
- larger).
-
- Extra field (35 bytes):
- - Pointer to first stored block length -- this points to the two-byte length
- of the first stored block, which is followed by the two-byte, one's
- complement of that length. The stored block length is preceded by the
- three-bit header of the stored block, which is the actual start of the
- stored block in the deflate format. See the bit offset field below.
- - Pointer to the last stored block length. This is the same as above, but
- for the last stored block of the uncompressed data in the gzip file.
- Initially this is the same as the first stored block length pointer.
- When the stored block gets to 16K (see the MAX_STORE define), then a new
- stored block as added, at which point the last stored block length pointer
- is different from the first stored block length pointer. When they are
- different, the first bit of the last stored block header is eight bits, or
- one byte back from the block length.
- - Compressed data crc and length. This is the crc and length of the data
- that is in the compressed portion of the deflate stream. These are used
- only in the event that the foo.add file containing the data to compress is
- lost after a compress operation is interrupted.
- - Total data crc and length. This is the crc and length of all of the data
- stored in the gzip file, compressed and uncompressed. It is used to
- reconstruct the gzip trailer when compressing, as well as when recovering
- interrupted operations.
- - Final stored block length. This is used to quickly find where to append,
- and allows the restoration of the original final stored block state when
- an append operation is interrupted.
- - First stored block start as the number of bits back from the final stored
- block first length byte. This value is in the range of 3..10, and is
- stored as the low three bits of the final byte of the extra field after
- subtracting three (0..7). This allows the last-block bit of the stored
- block header to be updated when a new stored block is added, for the case
- when the first stored block and the last stored block are the same. (When
- they are different, the numbers of bits back is known to be eight.) This
- also allows for new compressed data to be appended to the old compressed
- data in the compress operation, overwriting the previous first stored
- block, or for the compressed data to be terminated and a valid gzip file
- reconstructed on the off chance that a compression operation was
- interrupted and the data to compress in the foo.add file was deleted.
- - The operation in process. This is the next two bits in the last byte (the
- bits under the mask 0x18). The are interpreted as 0: nothing in process,
- 1: append in process, 2: compress in process, 3: replace in process.
- - The top three bits of the last byte in the extra field are reserved and
- are currently set to zero.
-
- Main procedure:
- - Exclusively create the foo.lock file using the O_CREAT and O_EXCL modes of
- the system open() call. If the modify time of an existing lock file is
- more than PATIENCE seconds old, then the lock file is deleted and the
- exclusive create is retried.
- - Load the extra field from the foo.gz file, and see if an operation was in
- progress but not completed. If so, apply the recovery procedure below.
- - Perform the append procedure with the provided data.
- - If the uncompressed data in the foo.gz file is 1MB or more, apply the
- compress procedure.
- - Delete the foo.lock file.
-
- Append procedure:
- - Put what to append in the foo.add file so that the operation can be
- restarted if this procedure is interrupted.
- - Mark the foo.gz extra field with the append operation in progress.
- + Restore the original last-block bit and stored block length of the last
- stored block from the information in the extra field, in case a previous
- append operation was interrupted.
- - Append the provided data to the last stored block, creating new stored
- blocks as needed and updating the stored blocks last-block bits and
- lengths.
- - Update the crc and length with the new data, and write the gzip trailer.
- - Write over the extra field (with a single write operation) with the new
- pointers, lengths, and crc's, and mark the gzip file as not in process.
- Though there is still a foo.add file, it will be ignored since nothing
- is in process. If a foo.add file is leftover from a previously
- completed operation, it is truncated when writing new data to it.
- - Delete the foo.add file.
-
- Compress and replace procedures:
- - Read all of the uncompressed data in the stored blocks in foo.gz and write
- it to foo.add. Also write foo.temp with the last 32K of that data to
- provide a dictionary for the next invocation of this procedure.
- - Rewrite the extra field marking foo.gz with a compression in process.
- * If there is no data provided to compress (due to a missing foo.add file
- when recovering), reconstruct and truncate the foo.gz file to contain
- only the previous compressed data and proceed to the step after the next
- one. Otherwise ...
- - Compress the data with the dictionary in foo.dict, and write to the
- foo.gz file starting at the bit immediately following the last previously
- compressed block. If there is no foo.dict, proceed anyway with the
- compression at slightly reduced efficiency. (For the foo.dict file to be
- missing requires some external failure beyond simply the interruption of
- a compress operation.) During this process, the foo.lock file is
- periodically touched to assure that that file is not considered stale by
- another process before we're done. The deflation is terminated with a
- non-last empty static block (10 bits long), that is then located and
- written over by a last-bit-set empty stored block.
- - Append the crc and length of the data in the gzip file (previously
- calculated during the append operations).
- - Write over the extra field with the updated stored block offsets, bits
- back, crc's, and lengths, and mark foo.gz as in process for a replacement
- of the dictionary.
- @ Delete the foo.add file.
- - Replace foo.dict with foo.temp.
- - Write over the extra field, marking foo.gz as complete.
-
- Recovery procedure:
- - If not a replace recovery, read in the foo.add file, and provide that data
- to the appropriate recovery below. If there is no foo.add file, provide
- a zero data length to the recovery. In that case, the append recovery
- restores the foo.gz to the previous compressed + uncompressed data state.
- For the the compress recovery, a missing foo.add file results in foo.gz
- being restored to the previous compressed-only data state.
- - Append recovery:
- - Pick up append at + step above
- - Compress recovery:
- - Pick up compress at * step above
- - Replace recovery:
- - Pick up compress at @ step above
- - Log the repair with a date stamp in foo.repairs
- */
-
-#include <sys/types.h>
-#include <stdio.h> /* rename, fopen, fprintf, fclose */
-#include <stdlib.h> /* malloc, free */
-#include <string.h> /* strlen, strrchr, strcpy, strncpy, strcmp */
-#include <fcntl.h> /* open */
-#include <unistd.h> /* lseek, read, write, close, unlink, sleep, */
- /* ftruncate, fsync */
-#include <errno.h> /* errno */
-#include <time.h> /* time, ctime */
-#include <sys/stat.h> /* stat */
-#include <sys/time.h> /* utimes */
-#include "zlib.h" /* crc32 */
-
-#include "gzlog.h" /* header for external access */
-
-#define local static
-typedef unsigned int uint;
-typedef unsigned long ulong;
-
-/* Macro for debugging to deterministically force recovery operations */
-#ifdef GZLOG_DEBUG
- #include <setjmp.h> /* longjmp */
- jmp_buf gzlog_jump; /* where to go back to */
- int gzlog_bail = 0; /* which point to bail at (1..8) */
- int gzlog_count = -1; /* number of times through to wait */
-# define BAIL(n) do { if (n == gzlog_bail && gzlog_count-- == 0) \
- longjmp(gzlog_jump, gzlog_bail); } while (0)
-#else
-# define BAIL(n)
-#endif
-
-/* how old the lock file can be in seconds before considering it stale */
-#define PATIENCE 300
-
-/* maximum stored block size in Kbytes -- must be in 1..63 */
-#define MAX_STORE 16
-
-/* number of stored Kbytes to trigger compression (must be >= 32 to allow
- dictionary construction, and <= 204 * MAX_STORE, in order for >> 10 to
- discard the stored block headers contribution of five bytes each) */
-#define TRIGGER 1024
-
-/* size of a deflate dictionary (this cannot be changed) */
-#define DICT 32768U
-
-/* values for the operation (2 bits) */
-#define NO_OP 0
-#define APPEND_OP 1
-#define COMPRESS_OP 2
-#define REPLACE_OP 3
-
-/* macros to extract little-endian integers from an unsigned byte buffer */
-#define PULL2(p) ((p)[0]+((uint)((p)[1])<<8))
-#define PULL4(p) (PULL2(p)+((ulong)PULL2(p+2)<<16))
-#define PULL8(p) (PULL4(p)+((off_t)PULL4(p+4)<<32))
-
-/* macros to store integers into a byte buffer in little-endian order */
-#define PUT2(p,a) do {(p)[0]=a;(p)[1]=(a)>>8;} while(0)
-#define PUT4(p,a) do {PUT2(p,a);PUT2(p+2,a>>16);} while(0)
-#define PUT8(p,a) do {PUT4(p,a);PUT4(p+4,a>>32);} while(0)
-
-/* internal structure for log information */
-#define LOGID "\106\035\172" /* should be three non-zero characters */
-struct log {
- char id[4]; /* contains LOGID to detect inadvertent overwrites */
- int fd; /* file descriptor for .gz file, opened read/write */
- char *path; /* allocated path, e.g. "/var/log/foo" or "foo" */
- char *end; /* end of path, for appending suffices such as ".gz" */
- off_t first; /* offset of first stored block first length byte */
- int back; /* location of first block id in bits back from first */
- uint stored; /* bytes currently in last stored block */
- off_t last; /* offset of last stored block first length byte */
- ulong ccrc; /* crc of compressed data */
- ulong clen; /* length (modulo 2^32) of compressed data */
- ulong tcrc; /* crc of total data */
- ulong tlen; /* length (modulo 2^32) of total data */
- time_t lock; /* last modify time of our lock file */
-};
-
-/* gzip header for gzlog */
-local unsigned char log_gzhead[] = {
- 0x1f, 0x8b, /* magic gzip id */
- 8, /* compression method is deflate */
- 4, /* there is an extra field (no file name) */
- 0, 0, 0, 0, /* no modification time provided */
- 0, 0xff, /* no extra flags, no OS specified */
- 39, 0, 'a', 'p', 35, 0 /* extra field with "ap" subfield */
- /* 35 is EXTRA, 39 is EXTRA + 4 */
-};
-
-#define HEAD sizeof(log_gzhead) /* should be 16 */
-
-/* initial gzip extra field content (52 == HEAD + EXTRA + 1) */
-local unsigned char log_gzext[] = {
- 52, 0, 0, 0, 0, 0, 0, 0, /* offset of first stored block length */
- 52, 0, 0, 0, 0, 0, 0, 0, /* offset of last stored block length */
- 0, 0, 0, 0, 0, 0, 0, 0, /* compressed data crc and length */
- 0, 0, 0, 0, 0, 0, 0, 0, /* total data crc and length */
- 0, 0, /* final stored block data length */
- 5 /* op is NO_OP, last bit 8 bits back */
-};
-
-#define EXTRA sizeof(log_gzext) /* should be 35 */
-
-/* initial gzip data and trailer */
-local unsigned char log_gzbody[] = {
- 1, 0, 0, 0xff, 0xff, /* empty stored block (last) */
- 0, 0, 0, 0, /* crc */
- 0, 0, 0, 0 /* uncompressed length */
-};
-
-#define BODY sizeof(log_gzbody)
-
-/* Exclusively create foo.lock in order to negotiate exclusive access to the
- foo.* files. If the modify time of an existing lock file is greater than
- PATIENCE seconds in the past, then consider the lock file to have been
- abandoned, delete it, and try the exclusive create again. Save the lock
- file modify time for verification of ownership. Return 0 on success, or -1
- on failure, usually due to an access restriction or invalid path. Note that
- if stat() or unlink() fails, it may be due to another process noticing the
- abandoned lock file a smidge sooner and deleting it, so those are not
- flagged as an error. */
-local int log_lock(struct log *log)
-{
- int fd;
- struct stat st;
-
- strcpy(log->end, ".lock");
- while ((fd = open(log->path, O_CREAT | O_EXCL, 0644)) < 0) {
- if (errno != EEXIST)
- return -1;
- if (stat(log->path, &st) == 0 && time(NULL) - st.st_mtime > PATIENCE) {
- unlink(log->path);
- continue;
- }
- sleep(2); /* relinquish the CPU for two seconds while waiting */
- }
- close(fd);
- if (stat(log->path, &st) == 0)
- log->lock = st.st_mtime;
- return 0;
-}
-
-/* Update the modify time of the lock file to now, in order to prevent another
- task from thinking that the lock is stale. Save the lock file modify time
- for verification of ownership. */
-local void log_touch(struct log *log)
-{
- struct stat st;
-
- strcpy(log->end, ".lock");
- utimes(log->path, NULL);
- if (stat(log->path, &st) == 0)
- log->lock = st.st_mtime;
-}
-
-/* Check the log file modify time against what is expected. Return true if
- this is not our lock. If it is our lock, touch it to keep it. */
-local int log_check(struct log *log)
-{
- struct stat st;
-
- strcpy(log->end, ".lock");
- if (stat(log->path, &st) || st.st_mtime != log->lock)
- return 1;
- log_touch(log);
- return 0;
-}
-
-/* Unlock a previously acquired lock, but only if it's ours. */
-local void log_unlock(struct log *log)
-{
- if (log_check(log))
- return;
- strcpy(log->end, ".lock");
- unlink(log->path);
- log->lock = 0;
-}
-
-/* Check the gzip header and read in the extra field, filling in the values in
- the log structure. Return op on success or -1 if the gzip header was not as
- expected. op is the current operation in progress last written to the extra
- field. This assumes that the gzip file has already been opened, with the
- file descriptor log->fd. */
-local int log_head(struct log *log)
-{
- int op;
- unsigned char buf[HEAD + EXTRA];
-
- if (lseek(log->fd, 0, SEEK_SET) < 0 ||
- read(log->fd, buf, HEAD + EXTRA) != HEAD + EXTRA ||
- memcmp(buf, log_gzhead, HEAD)) {
- return -1;
- }
- log->first = PULL8(buf + HEAD);
- log->last = PULL8(buf + HEAD + 8);
- log->ccrc = PULL4(buf + HEAD + 16);
- log->clen = PULL4(buf + HEAD + 20);
- log->tcrc = PULL4(buf + HEAD + 24);
- log->tlen = PULL4(buf + HEAD + 28);
- log->stored = PULL2(buf + HEAD + 32);
- log->back = 3 + (buf[HEAD + 34] & 7);
- op = (buf[HEAD + 34] >> 3) & 3;
- return op;
-}
-
-/* Write over the extra field contents, marking the operation as op. Use fsync
- to assure that the device is written to, and in the requested order. This
- operation, and only this operation, is assumed to be atomic in order to
- assure that the log is recoverable in the event of an interruption at any
- point in the process. Return -1 if the write to foo.gz failed. */
-local int log_mark(struct log *log, int op)
-{
- int ret;
- unsigned char ext[EXTRA];
-
- PUT8(ext, log->first);
- PUT8(ext + 8, log->last);
- PUT4(ext + 16, log->ccrc);
- PUT4(ext + 20, log->clen);
- PUT4(ext + 24, log->tcrc);
- PUT4(ext + 28, log->tlen);
- PUT2(ext + 32, log->stored);
- ext[34] = log->back - 3 + (op << 3);
- fsync(log->fd);
- ret = lseek(log->fd, HEAD, SEEK_SET) < 0 ||
- write(log->fd, ext, EXTRA) != EXTRA ? -1 : 0;
- fsync(log->fd);
- return ret;
-}
-
-/* Rewrite the last block header bits and subsequent zero bits to get to a byte
- boundary, setting the last block bit if last is true, and then write the
- remainder of the stored block header (length and one's complement). Leave
- the file pointer after the end of the last stored block data. Return -1 if
- there is a read or write failure on the foo.gz file */
-local int log_last(struct log *log, int last)
-{
- int back, len, mask;
- unsigned char buf[6];
-
- /* determine the locations of the bytes and bits to modify */
- back = log->last == log->first ? log->back : 8;
- len = back > 8 ? 2 : 1; /* bytes back from log->last */
- mask = 0x80 >> ((back - 1) & 7); /* mask for block last-bit */
-
- /* get the byte to modify (one or two back) into buf[0] -- don't need to
- read the byte if the last-bit is eight bits back, since in that case
- the entire byte will be modified */
- buf[0] = 0;
- if (back != 8 && (lseek(log->fd, log->last - len, SEEK_SET) < 0 ||
- read(log->fd, buf, 1) != 1))
- return -1;
-
- /* change the last-bit of the last stored block as requested -- note
- that all bits above the last-bit are set to zero, per the type bits
- of a stored block being 00 and per the convention that the bits to
- bring the stream to a byte boundary are also zeros */
- buf[1] = 0;
- buf[2 - len] = (*buf & (mask - 1)) + (last ? mask : 0);
-
- /* write the modified stored block header and lengths, move the file
- pointer to after the last stored block data */
- PUT2(buf + 2, log->stored);
- PUT2(buf + 4, log->stored ^ 0xffff);
- return lseek(log->fd, log->last - len, SEEK_SET) < 0 ||
- write(log->fd, buf + 2 - len, len + 4) != len + 4 ||
- lseek(log->fd, log->stored, SEEK_CUR) < 0 ? -1 : 0;
-}
-
-/* Append len bytes from data to the locked and open log file. len may be zero
- if recovering and no .add file was found. In that case, the previous state
- of the foo.gz file is restored. The data is appended uncompressed in
- deflate stored blocks. Return -1 if there was an error reading or writing
- the foo.gz file. */
-local int log_append(struct log *log, unsigned char *data, size_t len)
-{
- uint put;
- off_t end;
- unsigned char buf[8];
-
- /* set the last block last-bit and length, in case recovering an
- interrupted append, then position the file pointer to append to the
- block */
- if (log_last(log, 1))
- return -1;
-
- /* append, adding stored blocks and updating the offset of the last stored
- block as needed, and update the total crc and length */
- while (len) {
- /* append as much as we can to the last block */
- put = (MAX_STORE << 10) - log->stored;
- if (put > len)
- put = (uint)len;
- if (put) {
- if (write(log->fd, data, put) != put)
- return -1;
- BAIL(1);
- log->tcrc = crc32(log->tcrc, data, put);
- log->tlen += put;
- log->stored += put;
- data += put;
- len -= put;
- }
-
- /* if we need to, add a new empty stored block */
- if (len) {
- /* mark current block as not last */
- if (log_last(log, 0))
- return -1;
-
- /* point to new, empty stored block */
- log->last += 4 + log->stored + 1;
- log->stored = 0;
- }
-
- /* mark last block as last, update its length */
- if (log_last(log, 1))
- return -1;
- BAIL(2);
- }
-
- /* write the new crc and length trailer, and truncate just in case (could
- be recovering from partial append with a missing foo.add file) */
- PUT4(buf, log->tcrc);
- PUT4(buf + 4, log->tlen);
- if (write(log->fd, buf, 8) != 8 ||
- (end = lseek(log->fd, 0, SEEK_CUR)) < 0 || ftruncate(log->fd, end))
- return -1;
-
- /* write the extra field, marking the log file as done, delete .add file */
- if (log_mark(log, NO_OP))
- return -1;
- strcpy(log->end, ".add");
- unlink(log->path); /* ignore error, since may not exist */
- return 0;
-}
-
-/* Replace the foo.dict file with the foo.temp file. Also delete the foo.add
- file, since the compress operation may have been interrupted before that was
- done. Returns 1 if memory could not be allocated, or -1 if reading or
- writing foo.gz fails, or if the rename fails for some reason other than
- foo.temp not existing. foo.temp not existing is a permitted error, since
- the replace operation may have been interrupted after the rename is done,
- but before foo.gz is marked as complete. */
-local int log_replace(struct log *log)
-{
- int ret;
- char *dest;
-
- /* delete foo.add file */
- strcpy(log->end, ".add");
- unlink(log->path); /* ignore error, since may not exist */
- BAIL(3);
-
- /* rename foo.name to foo.dict, replacing foo.dict if it exists */
- strcpy(log->end, ".dict");
- dest = malloc(strlen(log->path) + 1);
- if (dest == NULL)
- return -2;
- strcpy(dest, log->path);
- strcpy(log->end, ".temp");
- ret = rename(log->path, dest);
- free(dest);
- if (ret && errno != ENOENT)
- return -1;
- BAIL(4);
-
- /* mark the foo.gz file as done */
- return log_mark(log, NO_OP);
-}
-
-/* Compress the len bytes at data and append the compressed data to the
- foo.gz deflate data immediately after the previous compressed data. This
- overwrites the previous uncompressed data, which was stored in foo.add
- and is the data provided in data[0..len-1]. If this operation is
- interrupted, it picks up at the start of this routine, with the foo.add
- file read in again. If there is no data to compress (len == 0), then we
- simply terminate the foo.gz file after the previously compressed data,
- appending a final empty stored block and the gzip trailer. Return -1 if
- reading or writing the log.gz file failed, or -2 if there was a memory
- allocation failure. */
-local int log_compress(struct log *log, unsigned char *data, size_t len)
-{
- int fd;
- uint got, max;
- ssize_t dict;
- off_t end;
- z_stream strm;
- unsigned char buf[DICT];
-
- /* compress and append compressed data */
- if (len) {
- /* set up for deflate, allocating memory */
- strm.zalloc = Z_NULL;
- strm.zfree = Z_NULL;
- strm.opaque = Z_NULL;
- if (deflateInit2(&strm, Z_DEFAULT_COMPRESSION, Z_DEFLATED, -15, 8,
- Z_DEFAULT_STRATEGY) != Z_OK)
- return -2;
-
- /* read in dictionary (last 32K of data that was compressed) */
- strcpy(log->end, ".dict");
- fd = open(log->path, O_RDONLY, 0);
- if (fd >= 0) {
- dict = read(fd, buf, DICT);
- close(fd);
- if (dict < 0) {
- deflateEnd(&strm);
- return -1;
- }
- if (dict)
- deflateSetDictionary(&strm, buf, (uint)dict);
- }
- log_touch(log);
-
- /* prime deflate with last bits of previous block, position write
- pointer to write those bits and overwrite what follows */
- if (lseek(log->fd, log->first - (log->back > 8 ? 2 : 1),
- SEEK_SET) < 0 ||
- read(log->fd, buf, 1) != 1 || lseek(log->fd, -1, SEEK_CUR) < 0) {
- deflateEnd(&strm);
- return -1;
- }
- deflatePrime(&strm, (8 - log->back) & 7, *buf);
-
- /* compress, finishing with a partial non-last empty static block */
- strm.next_in = data;
- max = (((uint)0 - 1) >> 1) + 1; /* in case int smaller than size_t */
- do {
- strm.avail_in = len > max ? max : (uint)len;
- len -= strm.avail_in;
- do {
- strm.avail_out = DICT;
- strm.next_out = buf;
- deflate(&strm, len ? Z_NO_FLUSH : Z_PARTIAL_FLUSH);
- got = DICT - strm.avail_out;
- if (got && write(log->fd, buf, got) != got) {
- deflateEnd(&strm);
- return -1;
- }
- log_touch(log);
- } while (strm.avail_out == 0);
- } while (len);
- deflateEnd(&strm);
- BAIL(5);
-
- /* find start of empty static block -- scanning backwards the first one
- bit is the second bit of the block, if the last byte is zero, then
- we know the byte before that has a one in the top bit, since an
- empty static block is ten bits long */
- if ((log->first = lseek(log->fd, -1, SEEK_CUR)) < 0 ||
- read(log->fd, buf, 1) != 1)
- return -1;
- log->first++;
- if (*buf) {
- log->back = 1;
- while ((*buf & ((uint)1 << (8 - log->back++))) == 0)
- ; /* guaranteed to terminate, since *buf != 0 */
- }
- else
- log->back = 10;
-
- /* update compressed crc and length */
- log->ccrc = log->tcrc;
- log->clen = log->tlen;
- }
- else {
- /* no data to compress -- fix up existing gzip stream */
- log->tcrc = log->ccrc;
- log->tlen = log->clen;
- }
-
- /* complete and truncate gzip stream */
- log->last = log->first;
- log->stored = 0;
- PUT4(buf, log->tcrc);
- PUT4(buf + 4, log->tlen);
- if (log_last(log, 1) || write(log->fd, buf, 8) != 8 ||
- (end = lseek(log->fd, 0, SEEK_CUR)) < 0 || ftruncate(log->fd, end))
- return -1;
- BAIL(6);
-
- /* mark as being in the replace operation */
- if (log_mark(log, REPLACE_OP))
- return -1;
-
- /* execute the replace operation and mark the file as done */
- return log_replace(log);
-}
-
-/* log a repair record to the .repairs file */
-local void log_log(struct log *log, int op, char *record)
-{
- time_t now;
- FILE *rec;
-
- now = time(NULL);
- strcpy(log->end, ".repairs");
- rec = fopen(log->path, "a");
- if (rec == NULL)
- return;
- fprintf(rec, "%.24s %s recovery: %s\n", ctime(&now), op == APPEND_OP ?
- "append" : (op == COMPRESS_OP ? "compress" : "replace"), record);
- fclose(rec);
- return;
-}
-
-/* Recover the interrupted operation op. First read foo.add for recovering an
- append or compress operation. Return -1 if there was an error reading or
- writing foo.gz or reading an existing foo.add, or -2 if there was a memory
- allocation failure. */
-local int log_recover(struct log *log, int op)
-{
- int fd, ret = 0;
- unsigned char *data = NULL;
- size_t len = 0;
- struct stat st;
-
- /* log recovery */
- log_log(log, op, "start");
-
- /* load foo.add file if expected and present */
- if (op == APPEND_OP || op == COMPRESS_OP) {
- strcpy(log->end, ".add");
- if (stat(log->path, &st) == 0 && st.st_size) {
- len = (size_t)(st.st_size);
- if ((off_t)len != st.st_size ||
- (data = malloc(st.st_size)) == NULL) {
- log_log(log, op, "allocation failure");
- return -2;
- }
- if ((fd = open(log->path, O_RDONLY, 0)) < 0) {
- log_log(log, op, ".add file read failure");
- return -1;
- }
- ret = (size_t)read(fd, data, len) != len;
- close(fd);
- if (ret) {
- log_log(log, op, ".add file read failure");
- return -1;
- }
- log_log(log, op, "loaded .add file");
- }
- else
- log_log(log, op, "missing .add file!");
- }
-
- /* recover the interrupted operation */
- switch (op) {
- case APPEND_OP:
- ret = log_append(log, data, len);
- break;
- case COMPRESS_OP:
- ret = log_compress(log, data, len);
- break;
- case REPLACE_OP:
- ret = log_replace(log);
- }
-
- /* log status */
- log_log(log, op, ret ? "failure" : "complete");
-
- /* clean up */
- if (data != NULL)
- free(data);
- return ret;
-}
-
-/* Close the foo.gz file (if open) and release the lock. */
-local void log_close(struct log *log)
-{
- if (log->fd >= 0)
- close(log->fd);
- log->fd = -1;
- log_unlock(log);
-}
-
-/* Open foo.gz, verify the header, and load the extra field contents, after
- first creating the foo.lock file to gain exclusive access to the foo.*
- files. If foo.gz does not exist or is empty, then write the initial header,
- extra, and body content of an empty foo.gz log file. If there is an error
- creating the lock file due to access restrictions, or an error reading or
- writing the foo.gz file, or if the foo.gz file is not a proper log file for
- this object (e.g. not a gzip file or does not contain the expected extra
- field), then return true. If there is an error, the lock is released.
- Otherwise, the lock is left in place. */
-local int log_open(struct log *log)
-{
- int op;
-
- /* release open file resource if left over -- can occur if lock lost
- between gzlog_open() and gzlog_write() */
- if (log->fd >= 0)
- close(log->fd);
- log->fd = -1;
-
- /* negotiate exclusive access */
- if (log_lock(log) < 0)
- return -1;
-
- /* open the log file, foo.gz */
- strcpy(log->end, ".gz");
- log->fd = open(log->path, O_RDWR | O_CREAT, 0644);
- if (log->fd < 0) {
- log_close(log);
- return -1;
- }
-
- /* if new, initialize foo.gz with an empty log, delete old dictionary */
- if (lseek(log->fd, 0, SEEK_END) == 0) {
- if (write(log->fd, log_gzhead, HEAD) != HEAD ||
- write(log->fd, log_gzext, EXTRA) != EXTRA ||
- write(log->fd, log_gzbody, BODY) != BODY) {
- log_close(log);
- return -1;
- }
- strcpy(log->end, ".dict");
- unlink(log->path);
- }
-
- /* verify log file and load extra field information */
- if ((op = log_head(log)) < 0) {
- log_close(log);
- return -1;
- }
-
- /* check for interrupted process and if so, recover */
- if (op != NO_OP && log_recover(log, op)) {
- log_close(log);
- return -1;
- }
-
- /* touch the lock file to prevent another process from grabbing it */
- log_touch(log);
- return 0;
-}
-
-/* See gzlog.h for the description of the external methods below */
-gzlog *gzlog_open(char *path)
-{
- size_t n;
- struct log *log;
-
- /* check arguments */
- if (path == NULL || *path == 0)
- return NULL;
-
- /* allocate and initialize log structure */
- log = malloc(sizeof(struct log));
- if (log == NULL)
- return NULL;
- strcpy(log->id, LOGID);
- log->fd = -1;
-
- /* save path and end of path for name construction */
- n = strlen(path);
- log->path = malloc(n + 9); /* allow for ".repairs" */
- if (log->path == NULL) {
- free(log);
- return NULL;
- }
- strcpy(log->path, path);
- log->end = log->path + n;
-
- /* gain exclusive access and verify log file -- may perform a
- recovery operation if needed */
- if (log_open(log)) {
- free(log->path);
- free(log);
- return NULL;
- }
-
- /* return pointer to log structure */
- return log;
-}
-
-/* gzlog_compress() return values:
- 0: all good
- -1: file i/o error (usually access issue)
- -2: memory allocation failure
- -3: invalid log pointer argument */
-int gzlog_compress(gzlog *logd)
-{
- int fd, ret;
- uint block;
- size_t len, next;
- unsigned char *data, buf[5];
- struct log *log = logd;
-
- /* check arguments */
- if (log == NULL || strcmp(log->id, LOGID))
- return -3;
-
- /* see if we lost the lock -- if so get it again and reload the extra
- field information (it probably changed), recover last operation if
- necessary */
- if (log_check(log) && log_open(log))
- return -1;
-
- /* create space for uncompressed data */
- len = ((size_t)(log->last - log->first) & ~(((size_t)1 << 10) - 1)) +
- log->stored;
- if ((data = malloc(len)) == NULL)
- return -2;
-
- /* do statement here is just a cheap trick for error handling */
- do {
- /* read in the uncompressed data */
- if (lseek(log->fd, log->first - 1, SEEK_SET) < 0)
- break;
- next = 0;
- while (next < len) {
- if (read(log->fd, buf, 5) != 5)
- break;
- block = PULL2(buf + 1);
- if (next + block > len ||
- read(log->fd, (char *)data + next, block) != block)
- break;
- next += block;
- }
- if (lseek(log->fd, 0, SEEK_CUR) != log->last + 4 + log->stored)
- break;
- log_touch(log);
-
- /* write the uncompressed data to the .add file */
- strcpy(log->end, ".add");
- fd = open(log->path, O_WRONLY | O_CREAT | O_TRUNC, 0644);
- if (fd < 0)
- break;
- ret = (size_t)write(fd, data, len) != len;
- if (ret | close(fd))
- break;
- log_touch(log);
-
- /* write the dictionary for the next compress to the .temp file */
- strcpy(log->end, ".temp");
- fd = open(log->path, O_WRONLY | O_CREAT | O_TRUNC, 0644);
- if (fd < 0)
- break;
- next = DICT > len ? len : DICT;
- ret = (size_t)write(fd, (char *)data + len - next, next) != next;
- if (ret | close(fd))
- break;
- log_touch(log);
-
- /* roll back to compressed data, mark the compress in progress */
- log->last = log->first;
- log->stored = 0;
- if (log_mark(log, COMPRESS_OP))
- break;
- BAIL(7);
-
- /* compress and append the data (clears mark) */
- ret = log_compress(log, data, len);
- free(data);
- return ret;
- } while (0);
-
- /* broke out of do above on i/o error */
- free(data);
- return -1;
-}
-
-/* gzlog_write() return values:
- 0: all good
- -1: file i/o error (usually access issue)
- -2: memory allocation failure
- -3: invalid log pointer argument */
-int gzlog_write(gzlog *logd, void *data, size_t len)
-{
- int fd, ret;
- struct log *log = logd;
-
- /* check arguments */
- if (log == NULL || strcmp(log->id, LOGID))
- return -3;
- if (data == NULL || len <= 0)
- return 0;
-
- /* see if we lost the lock -- if so get it again and reload the extra
- field information (it probably changed), recover last operation if
- necessary */
- if (log_check(log) && log_open(log))
- return -1;
-
- /* create and write .add file */
- strcpy(log->end, ".add");
- fd = open(log->path, O_WRONLY | O_CREAT | O_TRUNC, 0644);
- if (fd < 0)
- return -1;
- ret = (size_t)write(fd, data, len) != len;
- if (ret | close(fd))
- return -1;
- log_touch(log);
-
- /* mark log file with append in progress */
- if (log_mark(log, APPEND_OP))
- return -1;
- BAIL(8);
-
- /* append data (clears mark) */
- if (log_append(log, data, len))
- return -1;
-
- /* check to see if it's time to compress -- if not, then done */
- if (((log->last - log->first) >> 10) + (log->stored >> 10) < TRIGGER)
- return 0;
-
- /* time to compress */
- return gzlog_compress(log);
-}
-
-/* gzlog_close() return values:
- 0: ok
- -3: invalid log pointer argument */
-int gzlog_close(gzlog *logd)
-{
- struct log *log = logd;
-
- /* check arguments */
- if (log == NULL || strcmp(log->id, LOGID))
- return -3;
-
- /* close the log file and release the lock */
- log_close(log);
-
- /* free structure and return */
- if (log->path != NULL)
- free(log->path);
- strcpy(log->id, "bad");
- free(log);
- return 0;
-}
diff --git a/contrib/zlib/examples/gzlog.h b/contrib/zlib/examples/gzlog.h
deleted file mode 100644
index 86f0cec..0000000
--- a/contrib/zlib/examples/gzlog.h
+++ /dev/null
@@ -1,91 +0,0 @@
-/* gzlog.h
- Copyright (C) 2004, 2008, 2012 Mark Adler, all rights reserved
- version 2.2, 14 Aug 2012
-
- This software is provided 'as-is', without any express or implied
- warranty. In no event will the author be held liable for any damages
- arising from the use of this software.
-
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it
- freely, subject to the following restrictions:
-
- 1. The origin of this software must not be misrepresented; you must not
- claim that you wrote the original software. If you use this software
- in a product, an acknowledgment in the product documentation would be
- appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
-
- Mark Adler madler@alumni.caltech.edu
- */
-
-/* Version History:
- 1.0 26 Nov 2004 First version
- 2.0 25 Apr 2008 Complete redesign for recovery of interrupted operations
- Interface changed slightly in that now path is a prefix
- Compression now occurs as needed during gzlog_write()
- gzlog_write() now always leaves the log file as valid gzip
- 2.1 8 Jul 2012 Fix argument checks in gzlog_compress() and gzlog_write()
- 2.2 14 Aug 2012 Clean up signed comparisons
- */
-
-/*
- The gzlog object allows writing short messages to a gzipped log file,
- opening the log file locked for small bursts, and then closing it. The log
- object works by appending stored (uncompressed) data to the gzip file until
- 1 MB has been accumulated. At that time, the stored data is compressed, and
- replaces the uncompressed data in the file. The log file is truncated to
- its new size at that time. After each write operation, the log file is a
- valid gzip file that can decompressed to recover what was written.
-
- The gzlog operations can be interupted at any point due to an application or
- system crash, and the log file will be recovered the next time the log is
- opened with gzlog_open().
- */
-
-#ifndef GZLOG_H
-#define GZLOG_H
-
-/* gzlog object type */
-typedef void gzlog;
-
-/* Open a gzlog object, creating the log file if it does not exist. Return
- NULL on error. Note that gzlog_open() could take a while to complete if it
- has to wait to verify that a lock is stale (possibly for five minutes), or
- if there is significant contention with other instantiations of this object
- when locking the resource. path is the prefix of the file names created by
- this object. If path is "foo", then the log file will be "foo.gz", and
- other auxiliary files will be created and destroyed during the process:
- "foo.dict" for a compression dictionary, "foo.temp" for a temporary (next)
- dictionary, "foo.add" for data being added or compressed, "foo.lock" for the
- lock file, and "foo.repairs" to log recovery operations performed due to
- interrupted gzlog operations. A gzlog_open() followed by a gzlog_close()
- will recover a previously interrupted operation, if any. */
-gzlog *gzlog_open(char *path);
-
-/* Write to a gzlog object. Return zero on success, -1 if there is a file i/o
- error on any of the gzlog files (this should not happen if gzlog_open()
- succeeded, unless the device has run out of space or leftover auxiliary
- files have permissions or ownership that prevent their use), -2 if there is
- a memory allocation failure, or -3 if the log argument is invalid (e.g. if
- it was not created by gzlog_open()). This function will write data to the
- file uncompressed, until 1 MB has been accumulated, at which time that data
- will be compressed. The log file will be a valid gzip file upon successful
- return. */
-int gzlog_write(gzlog *log, void *data, size_t len);
-
-/* Force compression of any uncompressed data in the log. This should be used
- sparingly, if at all. The main application would be when a log file will
- not be appended to again. If this is used to compress frequently while
- appending, it will both significantly increase the execution time and
- reduce the compression ratio. The return codes are the same as for
- gzlog_write(). */
-int gzlog_compress(gzlog *log);
-
-/* Close a gzlog object. Return zero on success, -3 if the log argument is
- invalid. The log object is freed, and so cannot be referenced again. */
-int gzlog_close(gzlog *log);
-
-#endif
diff --git a/contrib/zlib/examples/zlib_how.html b/contrib/zlib/examples/zlib_how.html
deleted file mode 100644
index 444ff1c..0000000
--- a/contrib/zlib/examples/zlib_how.html
+++ /dev/null
@@ -1,545 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
- "http://www.w3.org/TR/REC-html40/loose.dtd">
-<html>
-<head>
-<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
-<title>zlib Usage Example</title>
-<!-- Copyright (c) 2004, 2005 Mark Adler. -->
-</head>
-<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#00A000">
-<h2 align="center"> zlib Usage Example </h2>
-We often get questions about how the <tt>deflate()</tt> and <tt>inflate()</tt> functions should be used.
-Users wonder when they should provide more input, when they should use more output,
-what to do with a <tt>Z_BUF_ERROR</tt>, how to make sure the process terminates properly, and
-so on. So for those who have read <tt>zlib.h</tt> (a few times), and
-would like further edification, below is an annotated example in C of simple routines to compress and decompress
-from an input file to an output file using <tt>deflate()</tt> and <tt>inflate()</tt> respectively. The
-annotations are interspersed between lines of the code. So please read between the lines.
-We hope this helps explain some of the intricacies of <em>zlib</em>.
-<p>
-Without further adieu, here is the program <a href="zpipe.c"><tt>zpipe.c</tt></a>:
-<pre><b>
-/* zpipe.c: example of proper use of zlib's inflate() and deflate()
- Not copyrighted -- provided to the public domain
- Version 1.4 11 December 2005 Mark Adler */
-
-/* Version history:
- 1.0 30 Oct 2004 First version
- 1.1 8 Nov 2004 Add void casting for unused return values
- Use switch statement for inflate() return values
- 1.2 9 Nov 2004 Add assertions to document zlib guarantees
- 1.3 6 Apr 2005 Remove incorrect assertion in inf()
- 1.4 11 Dec 2005 Add hack to avoid MSDOS end-of-line conversions
- Avoid some compiler warnings for input and output buffers
- */
-</b></pre><!-- -->
-We now include the header files for the required definitions. From
-<tt>stdio.h</tt> we use <tt>fopen()</tt>, <tt>fread()</tt>, <tt>fwrite()</tt>,
-<tt>feof()</tt>, <tt>ferror()</tt>, and <tt>fclose()</tt> for file i/o, and
-<tt>fputs()</tt> for error messages. From <tt>string.h</tt> we use
-<tt>strcmp()</tt> for command line argument processing.
-From <tt>assert.h</tt> we use the <tt>assert()</tt> macro.
-From <tt>zlib.h</tt>
-we use the basic compression functions <tt>deflateInit()</tt>,
-<tt>deflate()</tt>, and <tt>deflateEnd()</tt>, and the basic decompression
-functions <tt>inflateInit()</tt>, <tt>inflate()</tt>, and
-<tt>inflateEnd()</tt>.
-<pre><b>
-#include &lt;stdio.h&gt;
-#include &lt;string.h&gt;
-#include &lt;assert.h&gt;
-#include "zlib.h"
-</b></pre><!-- -->
-This is an ugly hack required to avoid corruption of the input and output data on
-Windows/MS-DOS systems. Without this, those systems would assume that the input and output
-files are text, and try to convert the end-of-line characters from one standard to
-another. That would corrupt binary data, and in particular would render the compressed data unusable.
-This sets the input and output to binary which suppresses the end-of-line conversions.
-<tt>SET_BINARY_MODE()</tt> will be used later on <tt>stdin</tt> and <tt>stdout</tt>, at the beginning of <tt>main()</tt>.
-<pre><b>
-#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(__CYGWIN__)
-# include &lt;fcntl.h&gt;
-# include &lt;io.h&gt;
-# define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
-#else
-# define SET_BINARY_MODE(file)
-#endif
-</b></pre><!-- -->
-<tt>CHUNK</tt> is simply the buffer size for feeding data to and pulling data
-from the <em>zlib</em> routines. Larger buffer sizes would be more efficient,
-especially for <tt>inflate()</tt>. If the memory is available, buffers sizes
-on the order of 128K or 256K bytes should be used.
-<pre><b>
-#define CHUNK 16384
-</b></pre><!-- -->
-The <tt>def()</tt> routine compresses data from an input file to an output file. The output data
-will be in the <em>zlib</em> format, which is different from the <em>gzip</em> or <em>zip</em>
-formats. The <em>zlib</em> format has a very small header of only two bytes to identify it as
-a <em>zlib</em> stream and to provide decoding information, and a four-byte trailer with a fast
-check value to verify the integrity of the uncompressed data after decoding.
-<pre><b>
-/* Compress from file source to file dest until EOF on source.
- def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
- allocated for processing, Z_STREAM_ERROR if an invalid compression
- level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
- version of the library linked do not match, or Z_ERRNO if there is
- an error reading or writing the files. */
-int def(FILE *source, FILE *dest, int level)
-{
-</b></pre>
-Here are the local variables for <tt>def()</tt>. <tt>ret</tt> will be used for <em>zlib</em>
-return codes. <tt>flush</tt> will keep track of the current flushing state for <tt>deflate()</tt>,
-which is either no flushing, or flush to completion after the end of the input file is reached.
-<tt>have</tt> is the amount of data returned from <tt>deflate()</tt>. The <tt>strm</tt> structure
-is used to pass information to and from the <em>zlib</em> routines, and to maintain the
-<tt>deflate()</tt> state. <tt>in</tt> and <tt>out</tt> are the input and output buffers for
-<tt>deflate()</tt>.
-<pre><b>
- int ret, flush;
- unsigned have;
- z_stream strm;
- unsigned char in[CHUNK];
- unsigned char out[CHUNK];
-</b></pre><!-- -->
-The first thing we do is to initialize the <em>zlib</em> state for compression using
-<tt>deflateInit()</tt>. This must be done before the first use of <tt>deflate()</tt>.
-The <tt>zalloc</tt>, <tt>zfree</tt>, and <tt>opaque</tt> fields in the <tt>strm</tt>
-structure must be initialized before calling <tt>deflateInit()</tt>. Here they are
-set to the <em>zlib</em> constant <tt>Z_NULL</tt> to request that <em>zlib</em> use
-the default memory allocation routines. An application may also choose to provide
-custom memory allocation routines here. <tt>deflateInit()</tt> will allocate on the
-order of 256K bytes for the internal state.
-(See <a href="zlib_tech.html"><em>zlib Technical Details</em></a>.)
-<p>
-<tt>deflateInit()</tt> is called with a pointer to the structure to be initialized and
-the compression level, which is an integer in the range of -1 to 9. Lower compression
-levels result in faster execution, but less compression. Higher levels result in
-greater compression, but slower execution. The <em>zlib</em> constant Z_DEFAULT_COMPRESSION,
-equal to -1,
-provides a good compromise between compression and speed and is equivalent to level 6.
-Level 0 actually does no compression at all, and in fact expands the data slightly to produce
-the <em>zlib</em> format (it is not a byte-for-byte copy of the input).
-More advanced applications of <em>zlib</em>
-may use <tt>deflateInit2()</tt> here instead. Such an application may want to reduce how
-much memory will be used, at some price in compression. Or it may need to request a
-<em>gzip</em> header and trailer instead of a <em>zlib</em> header and trailer, or raw
-encoding with no header or trailer at all.
-<p>
-We must check the return value of <tt>deflateInit()</tt> against the <em>zlib</em> constant
-<tt>Z_OK</tt> to make sure that it was able to
-allocate memory for the internal state, and that the provided arguments were valid.
-<tt>deflateInit()</tt> will also check that the version of <em>zlib</em> that the <tt>zlib.h</tt>
-file came from matches the version of <em>zlib</em> actually linked with the program. This
-is especially important for environments in which <em>zlib</em> is a shared library.
-<p>
-Note that an application can initialize multiple, independent <em>zlib</em> streams, which can
-operate in parallel. The state information maintained in the structure allows the <em>zlib</em>
-routines to be reentrant.
-<pre><b>
- /* allocate deflate state */
- strm.zalloc = Z_NULL;
- strm.zfree = Z_NULL;
- strm.opaque = Z_NULL;
- ret = deflateInit(&amp;strm, level);
- if (ret != Z_OK)
- return ret;
-</b></pre><!-- -->
-With the pleasantries out of the way, now we can get down to business. The outer <tt>do</tt>-loop
-reads all of the input file and exits at the bottom of the loop once end-of-file is reached.
-This loop contains the only call of <tt>deflate()</tt>. So we must make sure that all of the
-input data has been processed and that all of the output data has been generated and consumed
-before we fall out of the loop at the bottom.
-<pre><b>
- /* compress until end of file */
- do {
-</b></pre>
-We start off by reading data from the input file. The number of bytes read is put directly
-into <tt>avail_in</tt>, and a pointer to those bytes is put into <tt>next_in</tt>. We also
-check to see if end-of-file on the input has been reached. If we are at the end of file, then <tt>flush</tt> is set to the
-<em>zlib</em> constant <tt>Z_FINISH</tt>, which is later passed to <tt>deflate()</tt> to
-indicate that this is the last chunk of input data to compress. We need to use <tt>feof()</tt>
-to check for end-of-file as opposed to seeing if fewer than <tt>CHUNK</tt> bytes have been read. The
-reason is that if the input file length is an exact multiple of <tt>CHUNK</tt>, we will miss
-the fact that we got to the end-of-file, and not know to tell <tt>deflate()</tt> to finish
-up the compressed stream. If we are not yet at the end of the input, then the <em>zlib</em>
-constant <tt>Z_NO_FLUSH</tt> will be passed to <tt>deflate</tt> to indicate that we are still
-in the middle of the uncompressed data.
-<p>
-If there is an error in reading from the input file, the process is aborted with
-<tt>deflateEnd()</tt> being called to free the allocated <em>zlib</em> state before returning
-the error. We wouldn't want a memory leak, now would we? <tt>deflateEnd()</tt> can be called
-at any time after the state has been initialized. Once that's done, <tt>deflateInit()</tt> (or
-<tt>deflateInit2()</tt>) would have to be called to start a new compression process. There is
-no point here in checking the <tt>deflateEnd()</tt> return code. The deallocation can't fail.
-<pre><b>
- strm.avail_in = fread(in, 1, CHUNK, source);
- if (ferror(source)) {
- (void)deflateEnd(&amp;strm);
- return Z_ERRNO;
- }
- flush = feof(source) ? Z_FINISH : Z_NO_FLUSH;
- strm.next_in = in;
-</b></pre><!-- -->
-The inner <tt>do</tt>-loop passes our chunk of input data to <tt>deflate()</tt>, and then
-keeps calling <tt>deflate()</tt> until it is done producing output. Once there is no more
-new output, <tt>deflate()</tt> is guaranteed to have consumed all of the input, i.e.,
-<tt>avail_in</tt> will be zero.
-<pre><b>
- /* run deflate() on input until output buffer not full, finish
- compression if all of source has been read in */
- do {
-</b></pre>
-Output space is provided to <tt>deflate()</tt> by setting <tt>avail_out</tt> to the number
-of available output bytes and <tt>next_out</tt> to a pointer to that space.
-<pre><b>
- strm.avail_out = CHUNK;
- strm.next_out = out;
-</b></pre>
-Now we call the compression engine itself, <tt>deflate()</tt>. It takes as many of the
-<tt>avail_in</tt> bytes at <tt>next_in</tt> as it can process, and writes as many as
-<tt>avail_out</tt> bytes to <tt>next_out</tt>. Those counters and pointers are then
-updated past the input data consumed and the output data written. It is the amount of
-output space available that may limit how much input is consumed.
-Hence the inner loop to make sure that
-all of the input is consumed by providing more output space each time. Since <tt>avail_in</tt>
-and <tt>next_in</tt> are updated by <tt>deflate()</tt>, we don't have to mess with those
-between <tt>deflate()</tt> calls until it's all used up.
-<p>
-The parameters to <tt>deflate()</tt> are a pointer to the <tt>strm</tt> structure containing
-the input and output information and the internal compression engine state, and a parameter
-indicating whether and how to flush data to the output. Normally <tt>deflate</tt> will consume
-several K bytes of input data before producing any output (except for the header), in order
-to accumulate statistics on the data for optimum compression. It will then put out a burst of
-compressed data, and proceed to consume more input before the next burst. Eventually,
-<tt>deflate()</tt>
-must be told to terminate the stream, complete the compression with provided input data, and
-write out the trailer check value. <tt>deflate()</tt> will continue to compress normally as long
-as the flush parameter is <tt>Z_NO_FLUSH</tt>. Once the <tt>Z_FINISH</tt> parameter is provided,
-<tt>deflate()</tt> will begin to complete the compressed output stream. However depending on how
-much output space is provided, <tt>deflate()</tt> may have to be called several times until it
-has provided the complete compressed stream, even after it has consumed all of the input. The flush
-parameter must continue to be <tt>Z_FINISH</tt> for those subsequent calls.
-<p>
-There are other values of the flush parameter that are used in more advanced applications. You can
-force <tt>deflate()</tt> to produce a burst of output that encodes all of the input data provided
-so far, even if it wouldn't have otherwise, for example to control data latency on a link with
-compressed data. You can also ask that <tt>deflate()</tt> do that as well as erase any history up to
-that point so that what follows can be decompressed independently, for example for random access
-applications. Both requests will degrade compression by an amount depending on how often such
-requests are made.
-<p>
-<tt>deflate()</tt> has a return value that can indicate errors, yet we do not check it here. Why
-not? Well, it turns out that <tt>deflate()</tt> can do no wrong here. Let's go through
-<tt>deflate()</tt>'s return values and dispense with them one by one. The possible values are
-<tt>Z_OK</tt>, <tt>Z_STREAM_END</tt>, <tt>Z_STREAM_ERROR</tt>, or <tt>Z_BUF_ERROR</tt>. <tt>Z_OK</tt>
-is, well, ok. <tt>Z_STREAM_END</tt> is also ok and will be returned for the last call of
-<tt>deflate()</tt>. This is already guaranteed by calling <tt>deflate()</tt> with <tt>Z_FINISH</tt>
-until it has no more output. <tt>Z_STREAM_ERROR</tt> is only possible if the stream is not
-initialized properly, but we did initialize it properly. There is no harm in checking for
-<tt>Z_STREAM_ERROR</tt> here, for example to check for the possibility that some
-other part of the application inadvertently clobbered the memory containing the <em>zlib</em> state.
-<tt>Z_BUF_ERROR</tt> will be explained further below, but
-suffice it to say that this is simply an indication that <tt>deflate()</tt> could not consume
-more input or produce more output. <tt>deflate()</tt> can be called again with more output space
-or more available input, which it will be in this code.
-<pre><b>
- ret = deflate(&amp;strm, flush); /* no bad return value */
- assert(ret != Z_STREAM_ERROR); /* state not clobbered */
-</b></pre>
-Now we compute how much output <tt>deflate()</tt> provided on the last call, which is the
-difference between how much space was provided before the call, and how much output space
-is still available after the call. Then that data, if any, is written to the output file.
-We can then reuse the output buffer for the next call of <tt>deflate()</tt>. Again if there
-is a file i/o error, we call <tt>deflateEnd()</tt> before returning to avoid a memory leak.
-<pre><b>
- have = CHUNK - strm.avail_out;
- if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
- (void)deflateEnd(&amp;strm);
- return Z_ERRNO;
- }
-</b></pre>
-The inner <tt>do</tt>-loop is repeated until the last <tt>deflate()</tt> call fails to fill the
-provided output buffer. Then we know that <tt>deflate()</tt> has done as much as it can with
-the provided input, and that all of that input has been consumed. We can then fall out of this
-loop and reuse the input buffer.
-<p>
-The way we tell that <tt>deflate()</tt> has no more output is by seeing that it did not fill
-the output buffer, leaving <tt>avail_out</tt> greater than zero. However suppose that
-<tt>deflate()</tt> has no more output, but just so happened to exactly fill the output buffer!
-<tt>avail_out</tt> is zero, and we can't tell that <tt>deflate()</tt> has done all it can.
-As far as we know, <tt>deflate()</tt>
-has more output for us. So we call it again. But now <tt>deflate()</tt> produces no output
-at all, and <tt>avail_out</tt> remains unchanged as <tt>CHUNK</tt>. That <tt>deflate()</tt> call
-wasn't able to do anything, either consume input or produce output, and so it returns
-<tt>Z_BUF_ERROR</tt>. (See, I told you I'd cover this later.) However this is not a problem at
-all. Now we finally have the desired indication that <tt>deflate()</tt> is really done,
-and so we drop out of the inner loop to provide more input to <tt>deflate()</tt>.
-<p>
-With <tt>flush</tt> set to <tt>Z_FINISH</tt>, this final set of <tt>deflate()</tt> calls will
-complete the output stream. Once that is done, subsequent calls of <tt>deflate()</tt> would return
-<tt>Z_STREAM_ERROR</tt> if the flush parameter is not <tt>Z_FINISH</tt>, and do no more processing
-until the state is reinitialized.
-<p>
-Some applications of <em>zlib</em> have two loops that call <tt>deflate()</tt>
-instead of the single inner loop we have here. The first loop would call
-without flushing and feed all of the data to <tt>deflate()</tt>. The second loop would call
-<tt>deflate()</tt> with no more
-data and the <tt>Z_FINISH</tt> parameter to complete the process. As you can see from this
-example, that can be avoided by simply keeping track of the current flush state.
-<pre><b>
- } while (strm.avail_out == 0);
- assert(strm.avail_in == 0); /* all input will be used */
-</b></pre><!-- -->
-Now we check to see if we have already processed all of the input file. That information was
-saved in the <tt>flush</tt> variable, so we see if that was set to <tt>Z_FINISH</tt>. If so,
-then we're done and we fall out of the outer loop. We're guaranteed to get <tt>Z_STREAM_END</tt>
-from the last <tt>deflate()</tt> call, since we ran it until the last chunk of input was
-consumed and all of the output was generated.
-<pre><b>
- /* done when last data in file processed */
- } while (flush != Z_FINISH);
- assert(ret == Z_STREAM_END); /* stream will be complete */
-</b></pre><!-- -->
-The process is complete, but we still need to deallocate the state to avoid a memory leak
-(or rather more like a memory hemorrhage if you didn't do this). Then
-finally we can return with a happy return value.
-<pre><b>
- /* clean up and return */
- (void)deflateEnd(&amp;strm);
- return Z_OK;
-}
-</b></pre><!-- -->
-Now we do the same thing for decompression in the <tt>inf()</tt> routine. <tt>inf()</tt>
-decompresses what is hopefully a valid <em>zlib</em> stream from the input file and writes the
-uncompressed data to the output file. Much of the discussion above for <tt>def()</tt>
-applies to <tt>inf()</tt> as well, so the discussion here will focus on the differences between
-the two.
-<pre><b>
-/* Decompress from file source to file dest until stream ends or EOF.
- inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
- allocated for processing, Z_DATA_ERROR if the deflate data is
- invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
- the version of the library linked do not match, or Z_ERRNO if there
- is an error reading or writing the files. */
-int inf(FILE *source, FILE *dest)
-{
-</b></pre>
-The local variables have the same functionality as they do for <tt>def()</tt>. The
-only difference is that there is no <tt>flush</tt> variable, since <tt>inflate()</tt>
-can tell from the <em>zlib</em> stream itself when the stream is complete.
-<pre><b>
- int ret;
- unsigned have;
- z_stream strm;
- unsigned char in[CHUNK];
- unsigned char out[CHUNK];
-</b></pre><!-- -->
-The initialization of the state is the same, except that there is no compression level,
-of course, and two more elements of the structure are initialized. <tt>avail_in</tt>
-and <tt>next_in</tt> must be initialized before calling <tt>inflateInit()</tt>. This
-is because the application has the option to provide the start of the zlib stream in
-order for <tt>inflateInit()</tt> to have access to information about the compression
-method to aid in memory allocation. In the current implementation of <em>zlib</em>
-(up through versions 1.2.x), the method-dependent memory allocations are deferred to the first call of
-<tt>inflate()</tt> anyway. However those fields must be initialized since later versions
-of <em>zlib</em> that provide more compression methods may take advantage of this interface.
-In any case, no decompression is performed by <tt>inflateInit()</tt>, so the
-<tt>avail_out</tt> and <tt>next_out</tt> fields do not need to be initialized before calling.
-<p>
-Here <tt>avail_in</tt> is set to zero and <tt>next_in</tt> is set to <tt>Z_NULL</tt> to
-indicate that no input data is being provided.
-<pre><b>
- /* allocate inflate state */
- strm.zalloc = Z_NULL;
- strm.zfree = Z_NULL;
- strm.opaque = Z_NULL;
- strm.avail_in = 0;
- strm.next_in = Z_NULL;
- ret = inflateInit(&amp;strm);
- if (ret != Z_OK)
- return ret;
-</b></pre><!-- -->
-The outer <tt>do</tt>-loop decompresses input until <tt>inflate()</tt> indicates
-that it has reached the end of the compressed data and has produced all of the uncompressed
-output. This is in contrast to <tt>def()</tt> which processes all of the input file.
-If end-of-file is reached before the compressed data self-terminates, then the compressed
-data is incomplete and an error is returned.
-<pre><b>
- /* decompress until deflate stream ends or end of file */
- do {
-</b></pre>
-We read input data and set the <tt>strm</tt> structure accordingly. If we've reached the
-end of the input file, then we leave the outer loop and report an error, since the
-compressed data is incomplete. Note that we may read more data than is eventually consumed
-by <tt>inflate()</tt>, if the input file continues past the <em>zlib</em> stream.
-For applications where <em>zlib</em> streams are embedded in other data, this routine would
-need to be modified to return the unused data, or at least indicate how much of the input
-data was not used, so the application would know where to pick up after the <em>zlib</em> stream.
-<pre><b>
- strm.avail_in = fread(in, 1, CHUNK, source);
- if (ferror(source)) {
- (void)inflateEnd(&amp;strm);
- return Z_ERRNO;
- }
- if (strm.avail_in == 0)
- break;
- strm.next_in = in;
-</b></pre><!-- -->
-The inner <tt>do</tt>-loop has the same function it did in <tt>def()</tt>, which is to
-keep calling <tt>inflate()</tt> until has generated all of the output it can with the
-provided input.
-<pre><b>
- /* run inflate() on input until output buffer not full */
- do {
-</b></pre>
-Just like in <tt>def()</tt>, the same output space is provided for each call of <tt>inflate()</tt>.
-<pre><b>
- strm.avail_out = CHUNK;
- strm.next_out = out;
-</b></pre>
-Now we run the decompression engine itself. There is no need to adjust the flush parameter, since
-the <em>zlib</em> format is self-terminating. The main difference here is that there are
-return values that we need to pay attention to. <tt>Z_DATA_ERROR</tt>
-indicates that <tt>inflate()</tt> detected an error in the <em>zlib</em> compressed data format,
-which means that either the data is not a <em>zlib</em> stream to begin with, or that the data was
-corrupted somewhere along the way since it was compressed. The other error to be processed is
-<tt>Z_MEM_ERROR</tt>, which can occur since memory allocation is deferred until <tt>inflate()</tt>
-needs it, unlike <tt>deflate()</tt>, whose memory is allocated at the start by <tt>deflateInit()</tt>.
-<p>
-Advanced applications may use
-<tt>deflateSetDictionary()</tt> to prime <tt>deflate()</tt> with a set of likely data to improve the
-first 32K or so of compression. This is noted in the <em>zlib</em> header, so <tt>inflate()</tt>
-requests that that dictionary be provided before it can start to decompress. Without the dictionary,
-correct decompression is not possible. For this routine, we have no idea what the dictionary is,
-so the <tt>Z_NEED_DICT</tt> indication is converted to a <tt>Z_DATA_ERROR</tt>.
-<p>
-<tt>inflate()</tt> can also return <tt>Z_STREAM_ERROR</tt>, which should not be possible here,
-but could be checked for as noted above for <tt>def()</tt>. <tt>Z_BUF_ERROR</tt> does not need to be
-checked for here, for the same reasons noted for <tt>def()</tt>. <tt>Z_STREAM_END</tt> will be
-checked for later.
-<pre><b>
- ret = inflate(&amp;strm, Z_NO_FLUSH);
- assert(ret != Z_STREAM_ERROR); /* state not clobbered */
- switch (ret) {
- case Z_NEED_DICT:
- ret = Z_DATA_ERROR; /* and fall through */
- case Z_DATA_ERROR:
- case Z_MEM_ERROR:
- (void)inflateEnd(&amp;strm);
- return ret;
- }
-</b></pre>
-The output of <tt>inflate()</tt> is handled identically to that of <tt>deflate()</tt>.
-<pre><b>
- have = CHUNK - strm.avail_out;
- if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
- (void)inflateEnd(&amp;strm);
- return Z_ERRNO;
- }
-</b></pre>
-The inner <tt>do</tt>-loop ends when <tt>inflate()</tt> has no more output as indicated
-by not filling the output buffer, just as for <tt>deflate()</tt>. In this case, we cannot
-assert that <tt>strm.avail_in</tt> will be zero, since the deflate stream may end before the file
-does.
-<pre><b>
- } while (strm.avail_out == 0);
-</b></pre><!-- -->
-The outer <tt>do</tt>-loop ends when <tt>inflate()</tt> reports that it has reached the
-end of the input <em>zlib</em> stream, has completed the decompression and integrity
-check, and has provided all of the output. This is indicated by the <tt>inflate()</tt>
-return value <tt>Z_STREAM_END</tt>. The inner loop is guaranteed to leave <tt>ret</tt>
-equal to <tt>Z_STREAM_END</tt> if the last chunk of the input file read contained the end
-of the <em>zlib</em> stream. So if the return value is not <tt>Z_STREAM_END</tt>, the
-loop continues to read more input.
-<pre><b>
- /* done when inflate() says it's done */
- } while (ret != Z_STREAM_END);
-</b></pre><!-- -->
-At this point, decompression successfully completed, or we broke out of the loop due to no
-more data being available from the input file. If the last <tt>inflate()</tt> return value
-is not <tt>Z_STREAM_END</tt>, then the <em>zlib</em> stream was incomplete and a data error
-is returned. Otherwise, we return with a happy return value. Of course, <tt>inflateEnd()</tt>
-is called first to avoid a memory leak.
-<pre><b>
- /* clean up and return */
- (void)inflateEnd(&amp;strm);
- return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
-}
-</b></pre><!-- -->
-That ends the routines that directly use <em>zlib</em>. The following routines make this
-a command-line program by running data through the above routines from <tt>stdin</tt> to
-<tt>stdout</tt>, and handling any errors reported by <tt>def()</tt> or <tt>inf()</tt>.
-<p>
-<tt>zerr()</tt> is used to interpret the possible error codes from <tt>def()</tt>
-and <tt>inf()</tt>, as detailed in their comments above, and print out an error message.
-Note that these are only a subset of the possible return values from <tt>deflate()</tt>
-and <tt>inflate()</tt>.
-<pre><b>
-/* report a zlib or i/o error */
-void zerr(int ret)
-{
- fputs("zpipe: ", stderr);
- switch (ret) {
- case Z_ERRNO:
- if (ferror(stdin))
- fputs("error reading stdin\n", stderr);
- if (ferror(stdout))
- fputs("error writing stdout\n", stderr);
- break;
- case Z_STREAM_ERROR:
- fputs("invalid compression level\n", stderr);
- break;
- case Z_DATA_ERROR:
- fputs("invalid or incomplete deflate data\n", stderr);
- break;
- case Z_MEM_ERROR:
- fputs("out of memory\n", stderr);
- break;
- case Z_VERSION_ERROR:
- fputs("zlib version mismatch!\n", stderr);
- }
-}
-</b></pre><!-- -->
-Here is the <tt>main()</tt> routine used to test <tt>def()</tt> and <tt>inf()</tt>. The
-<tt>zpipe</tt> command is simply a compression pipe from <tt>stdin</tt> to <tt>stdout</tt>, if
-no arguments are given, or it is a decompression pipe if <tt>zpipe -d</tt> is used. If any other
-arguments are provided, no compression or decompression is performed. Instead a usage
-message is displayed. Examples are <tt>zpipe < foo.txt > foo.txt.z</tt> to compress, and
-<tt>zpipe -d < foo.txt.z > foo.txt</tt> to decompress.
-<pre><b>
-/* compress or decompress from stdin to stdout */
-int main(int argc, char **argv)
-{
- int ret;
-
- /* avoid end-of-line conversions */
- SET_BINARY_MODE(stdin);
- SET_BINARY_MODE(stdout);
-
- /* do compression if no arguments */
- if (argc == 1) {
- ret = def(stdin, stdout, Z_DEFAULT_COMPRESSION);
- if (ret != Z_OK)
- zerr(ret);
- return ret;
- }
-
- /* do decompression if -d specified */
- else if (argc == 2 &amp;&amp; strcmp(argv[1], "-d") == 0) {
- ret = inf(stdin, stdout);
- if (ret != Z_OK)
- zerr(ret);
- return ret;
- }
-
- /* otherwise, report usage */
- else {
- fputs("zpipe usage: zpipe [-d] &lt; source &gt; dest\n", stderr);
- return 1;
- }
-}
-</b></pre>
-<hr>
-<i>Copyright (c) 2004, 2005 by Mark Adler<br>Last modified 11 December 2005</i>
-</body>
-</html>
diff --git a/contrib/zlib/examples/zpipe.c b/contrib/zlib/examples/zpipe.c
deleted file mode 100644
index 83535d1..0000000
--- a/contrib/zlib/examples/zpipe.c
+++ /dev/null
@@ -1,205 +0,0 @@
-/* zpipe.c: example of proper use of zlib's inflate() and deflate()
- Not copyrighted -- provided to the public domain
- Version 1.4 11 December 2005 Mark Adler */
-
-/* Version history:
- 1.0 30 Oct 2004 First version
- 1.1 8 Nov 2004 Add void casting for unused return values
- Use switch statement for inflate() return values
- 1.2 9 Nov 2004 Add assertions to document zlib guarantees
- 1.3 6 Apr 2005 Remove incorrect assertion in inf()
- 1.4 11 Dec 2005 Add hack to avoid MSDOS end-of-line conversions
- Avoid some compiler warnings for input and output buffers
- */
-
-#include <stdio.h>
-#include <string.h>
-#include <assert.h>
-#include "zlib.h"
-
-#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(__CYGWIN__)
-# include <fcntl.h>
-# include <io.h>
-# define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
-#else
-# define SET_BINARY_MODE(file)
-#endif
-
-#define CHUNK 16384
-
-/* Compress from file source to file dest until EOF on source.
- def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
- allocated for processing, Z_STREAM_ERROR if an invalid compression
- level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
- version of the library linked do not match, or Z_ERRNO if there is
- an error reading or writing the files. */
-int def(FILE *source, FILE *dest, int level)
-{
- int ret, flush;
- unsigned have;
- z_stream strm;
- unsigned char in[CHUNK];
- unsigned char out[CHUNK];
-
- /* allocate deflate state */
- strm.zalloc = Z_NULL;
- strm.zfree = Z_NULL;
- strm.opaque = Z_NULL;
- ret = deflateInit(&strm, level);
- if (ret != Z_OK)
- return ret;
-
- /* compress until end of file */
- do {
- strm.avail_in = fread(in, 1, CHUNK, source);
- if (ferror(source)) {
- (void)deflateEnd(&strm);
- return Z_ERRNO;
- }
- flush = feof(source) ? Z_FINISH : Z_NO_FLUSH;
- strm.next_in = in;
-
- /* run deflate() on input until output buffer not full, finish
- compression if all of source has been read in */
- do {
- strm.avail_out = CHUNK;
- strm.next_out = out;
- ret = deflate(&strm, flush); /* no bad return value */
- assert(ret != Z_STREAM_ERROR); /* state not clobbered */
- have = CHUNK - strm.avail_out;
- if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
- (void)deflateEnd(&strm);
- return Z_ERRNO;
- }
- } while (strm.avail_out == 0);
- assert(strm.avail_in == 0); /* all input will be used */
-
- /* done when last data in file processed */
- } while (flush != Z_FINISH);
- assert(ret == Z_STREAM_END); /* stream will be complete */
-
- /* clean up and return */
- (void)deflateEnd(&strm);
- return Z_OK;
-}
-
-/* Decompress from file source to file dest until stream ends or EOF.
- inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
- allocated for processing, Z_DATA_ERROR if the deflate data is
- invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
- the version of the library linked do not match, or Z_ERRNO if there
- is an error reading or writing the files. */
-int inf(FILE *source, FILE *dest)
-{
- int ret;
- unsigned have;
- z_stream strm;
- unsigned char in[CHUNK];
- unsigned char out[CHUNK];
-
- /* allocate inflate state */
- strm.zalloc = Z_NULL;
- strm.zfree = Z_NULL;
- strm.opaque = Z_NULL;
- strm.avail_in = 0;
- strm.next_in = Z_NULL;
- ret = inflateInit(&strm);
- if (ret != Z_OK)
- return ret;
-
- /* decompress until deflate stream ends or end of file */
- do {
- strm.avail_in = fread(in, 1, CHUNK, source);
- if (ferror(source)) {
- (void)inflateEnd(&strm);
- return Z_ERRNO;
- }
- if (strm.avail_in == 0)
- break;
- strm.next_in = in;
-
- /* run inflate() on input until output buffer not full */
- do {
- strm.avail_out = CHUNK;
- strm.next_out = out;
- ret = inflate(&strm, Z_NO_FLUSH);
- assert(ret != Z_STREAM_ERROR); /* state not clobbered */
- switch (ret) {
- case Z_NEED_DICT:
- ret = Z_DATA_ERROR; /* and fall through */
- case Z_DATA_ERROR:
- case Z_MEM_ERROR:
- (void)inflateEnd(&strm);
- return ret;
- }
- have = CHUNK - strm.avail_out;
- if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
- (void)inflateEnd(&strm);
- return Z_ERRNO;
- }
- } while (strm.avail_out == 0);
-
- /* done when inflate() says it's done */
- } while (ret != Z_STREAM_END);
-
- /* clean up and return */
- (void)inflateEnd(&strm);
- return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
-}
-
-/* report a zlib or i/o error */
-void zerr(int ret)
-{
- fputs("zpipe: ", stderr);
- switch (ret) {
- case Z_ERRNO:
- if (ferror(stdin))
- fputs("error reading stdin\n", stderr);
- if (ferror(stdout))
- fputs("error writing stdout\n", stderr);
- break;
- case Z_STREAM_ERROR:
- fputs("invalid compression level\n", stderr);
- break;
- case Z_DATA_ERROR:
- fputs("invalid or incomplete deflate data\n", stderr);
- break;
- case Z_MEM_ERROR:
- fputs("out of memory\n", stderr);
- break;
- case Z_VERSION_ERROR:
- fputs("zlib version mismatch!\n", stderr);
- }
-}
-
-/* compress or decompress from stdin to stdout */
-int main(int argc, char **argv)
-{
- int ret;
-
- /* avoid end-of-line conversions */
- SET_BINARY_MODE(stdin);
- SET_BINARY_MODE(stdout);
-
- /* do compression if no arguments */
- if (argc == 1) {
- ret = def(stdin, stdout, Z_DEFAULT_COMPRESSION);
- if (ret != Z_OK)
- zerr(ret);
- return ret;
- }
-
- /* do decompression if -d specified */
- else if (argc == 2 && strcmp(argv[1], "-d") == 0) {
- ret = inf(stdin, stdout);
- if (ret != Z_OK)
- zerr(ret);
- return ret;
- }
-
- /* otherwise, report usage */
- else {
- fputs("zpipe usage: zpipe [-d] < source > dest\n", stderr);
- return 1;
- }
-}
diff --git a/contrib/zlib/examples/zran.c b/contrib/zlib/examples/zran.c
deleted file mode 100644
index 4fec659..0000000
--- a/contrib/zlib/examples/zran.c
+++ /dev/null
@@ -1,409 +0,0 @@
-/* zran.c -- example of zlib/gzip stream indexing and random access
- * Copyright (C) 2005, 2012 Mark Adler
- * For conditions of distribution and use, see copyright notice in zlib.h
- Version 1.1 29 Sep 2012 Mark Adler */
-
-/* Version History:
- 1.0 29 May 2005 First version
- 1.1 29 Sep 2012 Fix memory reallocation error
- */
-
-/* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
- for random access of a compressed file. A file containing a zlib or gzip
- stream is provided on the command line. The compressed stream is decoded in
- its entirety, and an index built with access points about every SPAN bytes
- in the uncompressed output. The compressed file is left open, and can then
- be read randomly, having to decompress on the average SPAN/2 uncompressed
- bytes before getting to the desired block of data.
-
- An access point can be created at the start of any deflate block, by saving
- the starting file offset and bit of that block, and the 32K bytes of
- uncompressed data that precede that block. Also the uncompressed offset of
- that block is saved to provide a referece for locating a desired starting
- point in the uncompressed stream. build_index() works by decompressing the
- input zlib or gzip stream a block at a time, and at the end of each block
- deciding if enough uncompressed data has gone by to justify the creation of
- a new access point. If so, that point is saved in a data structure that
- grows as needed to accommodate the points.
-
- To use the index, an offset in the uncompressed data is provided, for which
- the latest access point at or preceding that offset is located in the index.
- The input file is positioned to the specified location in the index, and if
- necessary the first few bits of the compressed data is read from the file.
- inflate is initialized with those bits and the 32K of uncompressed data, and
- the decompression then proceeds until the desired offset in the file is
- reached. Then the decompression continues to read the desired uncompressed
- data from the file.
-
- Another approach would be to generate the index on demand. In that case,
- requests for random access reads from the compressed data would try to use
- the index, but if a read far enough past the end of the index is required,
- then further index entries would be generated and added.
-
- There is some fair bit of overhead to starting inflation for the random
- access, mainly copying the 32K byte dictionary. So if small pieces of the
- file are being accessed, it would make sense to implement a cache to hold
- some lookahead and avoid many calls to extract() for small lengths.
-
- Another way to build an index would be to use inflateCopy(). That would
- not be constrained to have access points at block boundaries, but requires
- more memory per access point, and also cannot be saved to file due to the
- use of pointers in the state. The approach here allows for storage of the
- index in a file.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include "zlib.h"
-
-#define local static
-
-#define SPAN 1048576L /* desired distance between access points */
-#define WINSIZE 32768U /* sliding window size */
-#define CHUNK 16384 /* file input buffer size */
-
-/* access point entry */
-struct point {
- off_t out; /* corresponding offset in uncompressed data */
- off_t in; /* offset in input file of first full byte */
- int bits; /* number of bits (1-7) from byte at in - 1, or 0 */
- unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
-};
-
-/* access point list */
-struct access {
- int have; /* number of list entries filled in */
- int size; /* number of list entries allocated */
- struct point *list; /* allocated list */
-};
-
-/* Deallocate an index built by build_index() */
-local void free_index(struct access *index)
-{
- if (index != NULL) {
- free(index->list);
- free(index);
- }
-}
-
-/* Add an entry to the access point list. If out of memory, deallocate the
- existing list and return NULL. */
-local struct access *addpoint(struct access *index, int bits,
- off_t in, off_t out, unsigned left, unsigned char *window)
-{
- struct point *next;
-
- /* if list is empty, create it (start with eight points) */
- if (index == NULL) {
- index = malloc(sizeof(struct access));
- if (index == NULL) return NULL;
- index->list = malloc(sizeof(struct point) << 3);
- if (index->list == NULL) {
- free(index);
- return NULL;
- }
- index->size = 8;
- index->have = 0;
- }
-
- /* if list is full, make it bigger */
- else if (index->have == index->size) {
- index->size <<= 1;
- next = realloc(index->list, sizeof(struct point) * index->size);
- if (next == NULL) {
- free_index(index);
- return NULL;
- }
- index->list = next;
- }
-
- /* fill in entry and increment how many we have */
- next = index->list + index->have;
- next->bits = bits;
- next->in = in;
- next->out = out;
- if (left)
- memcpy(next->window, window + WINSIZE - left, left);
- if (left < WINSIZE)
- memcpy(next->window + left, window, WINSIZE - left);
- index->have++;
-
- /* return list, possibly reallocated */
- return index;
-}
-
-/* Make one entire pass through the compressed stream and build an index, with
- access points about every span bytes of uncompressed output -- span is
- chosen to balance the speed of random access against the memory requirements
- of the list, about 32K bytes per access point. Note that data after the end
- of the first zlib or gzip stream in the file is ignored. build_index()
- returns the number of access points on success (>= 1), Z_MEM_ERROR for out
- of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
- file read error. On success, *built points to the resulting index. */
-local int build_index(FILE *in, off_t span, struct access **built)
-{
- int ret;
- off_t totin, totout; /* our own total counters to avoid 4GB limit */
- off_t last; /* totout value of last access point */
- struct access *index; /* access points being generated */
- z_stream strm;
- unsigned char input[CHUNK];
- unsigned char window[WINSIZE];
-
- /* initialize inflate */
- strm.zalloc = Z_NULL;
- strm.zfree = Z_NULL;
- strm.opaque = Z_NULL;
- strm.avail_in = 0;
- strm.next_in = Z_NULL;
- ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
- if (ret != Z_OK)
- return ret;
-
- /* inflate the input, maintain a sliding window, and build an index -- this
- also validates the integrity of the compressed data using the check
- information at the end of the gzip or zlib stream */
- totin = totout = last = 0;
- index = NULL; /* will be allocated by first addpoint() */
- strm.avail_out = 0;
- do {
- /* get some compressed data from input file */
- strm.avail_in = fread(input, 1, CHUNK, in);
- if (ferror(in)) {
- ret = Z_ERRNO;
- goto build_index_error;
- }
- if (strm.avail_in == 0) {
- ret = Z_DATA_ERROR;
- goto build_index_error;
- }
- strm.next_in = input;
-
- /* process all of that, or until end of stream */
- do {
- /* reset sliding window if necessary */
- if (strm.avail_out == 0) {
- strm.avail_out = WINSIZE;
- strm.next_out = window;
- }
-
- /* inflate until out of input, output, or at end of block --
- update the total input and output counters */
- totin += strm.avail_in;
- totout += strm.avail_out;
- ret = inflate(&strm, Z_BLOCK); /* return at end of block */
- totin -= strm.avail_in;
- totout -= strm.avail_out;
- if (ret == Z_NEED_DICT)
- ret = Z_DATA_ERROR;
- if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
- goto build_index_error;
- if (ret == Z_STREAM_END)
- break;
-
- /* if at end of block, consider adding an index entry (note that if
- data_type indicates an end-of-block, then all of the
- uncompressed data from that block has been delivered, and none
- of the compressed data after that block has been consumed,
- except for up to seven bits) -- the totout == 0 provides an
- entry point after the zlib or gzip header, and assures that the
- index always has at least one access point; we avoid creating an
- access point after the last block by checking bit 6 of data_type
- */
- if ((strm.data_type & 128) && !(strm.data_type & 64) &&
- (totout == 0 || totout - last > span)) {
- index = addpoint(index, strm.data_type & 7, totin,
- totout, strm.avail_out, window);
- if (index == NULL) {
- ret = Z_MEM_ERROR;
- goto build_index_error;
- }
- last = totout;
- }
- } while (strm.avail_in != 0);
- } while (ret != Z_STREAM_END);
-
- /* clean up and return index (release unused entries in list) */
- (void)inflateEnd(&strm);
- index->list = realloc(index->list, sizeof(struct point) * index->have);
- index->size = index->have;
- *built = index;
- return index->size;
-
- /* return error */
- build_index_error:
- (void)inflateEnd(&strm);
- if (index != NULL)
- free_index(index);
- return ret;
-}
-
-/* Use the index to read len bytes from offset into buf, return bytes read or
- negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
- the end of the uncompressed data, then extract() will return a value less
- than len, indicating how much as actually read into buf. This function
- should not return a data error unless the file was modified since the index
- was generated. extract() may also return Z_ERRNO if there is an error on
- reading or seeking the input file. */
-local int extract(FILE *in, struct access *index, off_t offset,
- unsigned char *buf, int len)
-{
- int ret, skip;
- z_stream strm;
- struct point *here;
- unsigned char input[CHUNK];
- unsigned char discard[WINSIZE];
-
- /* proceed only if something reasonable to do */
- if (len < 0)
- return 0;
-
- /* find where in stream to start */
- here = index->list;
- ret = index->have;
- while (--ret && here[1].out <= offset)
- here++;
-
- /* initialize file and inflate state to start there */
- strm.zalloc = Z_NULL;
- strm.zfree = Z_NULL;
- strm.opaque = Z_NULL;
- strm.avail_in = 0;
- strm.next_in = Z_NULL;
- ret = inflateInit2(&strm, -15); /* raw inflate */
- if (ret != Z_OK)
- return ret;
- ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
- if (ret == -1)
- goto extract_ret;
- if (here->bits) {
- ret = getc(in);
- if (ret == -1) {
- ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
- goto extract_ret;
- }
- (void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
- }
- (void)inflateSetDictionary(&strm, here->window, WINSIZE);
-
- /* skip uncompressed bytes until offset reached, then satisfy request */
- offset -= here->out;
- strm.avail_in = 0;
- skip = 1; /* while skipping to offset */
- do {
- /* define where to put uncompressed data, and how much */
- if (offset == 0 && skip) { /* at offset now */
- strm.avail_out = len;
- strm.next_out = buf;
- skip = 0; /* only do this once */
- }
- if (offset > WINSIZE) { /* skip WINSIZE bytes */
- strm.avail_out = WINSIZE;
- strm.next_out = discard;
- offset -= WINSIZE;
- }
- else if (offset != 0) { /* last skip */
- strm.avail_out = (unsigned)offset;
- strm.next_out = discard;
- offset = 0;
- }
-
- /* uncompress until avail_out filled, or end of stream */
- do {
- if (strm.avail_in == 0) {
- strm.avail_in = fread(input, 1, CHUNK, in);
- if (ferror(in)) {
- ret = Z_ERRNO;
- goto extract_ret;
- }
- if (strm.avail_in == 0) {
- ret = Z_DATA_ERROR;
- goto extract_ret;
- }
- strm.next_in = input;
- }
- ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
- if (ret == Z_NEED_DICT)
- ret = Z_DATA_ERROR;
- if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
- goto extract_ret;
- if (ret == Z_STREAM_END)
- break;
- } while (strm.avail_out != 0);
-
- /* if reach end of stream, then don't keep trying to get more */
- if (ret == Z_STREAM_END)
- break;
-
- /* do until offset reached and requested data read, or stream ends */
- } while (skip);
-
- /* compute number of uncompressed bytes read after offset */
- ret = skip ? 0 : len - strm.avail_out;
-
- /* clean up and return bytes read or error */
- extract_ret:
- (void)inflateEnd(&strm);
- return ret;
-}
-
-/* Demonstrate the use of build_index() and extract() by processing the file
- provided on the command line, and the extracting 16K from about 2/3rds of
- the way through the uncompressed output, and writing that to stdout. */
-int main(int argc, char **argv)
-{
- int len;
- off_t offset;
- FILE *in;
- struct access *index = NULL;
- unsigned char buf[CHUNK];
-
- /* open input file */
- if (argc != 2) {
- fprintf(stderr, "usage: zran file.gz\n");
- return 1;
- }
- in = fopen(argv[1], "rb");
- if (in == NULL) {
- fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
- return 1;
- }
-
- /* build index */
- len = build_index(in, SPAN, &index);
- if (len < 0) {
- fclose(in);
- switch (len) {
- case Z_MEM_ERROR:
- fprintf(stderr, "zran: out of memory\n");
- break;
- case Z_DATA_ERROR:
- fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
- break;
- case Z_ERRNO:
- fprintf(stderr, "zran: read error on %s\n", argv[1]);
- break;
- default:
- fprintf(stderr, "zran: error %d while building index\n", len);
- }
- return 1;
- }
- fprintf(stderr, "zran: built index with %d access points\n", len);
-
- /* use index by reading some bytes from an arbitrary offset */
- offset = (index->list[index->have - 1].out << 1) / 3;
- len = extract(in, index, offset, buf, CHUNK);
- if (len < 0)
- fprintf(stderr, "zran: extraction failed: %s error\n",
- len == Z_MEM_ERROR ? "out of memory" : "input corrupted");
- else {
- fwrite(buf, 1, len, stdout);
- fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset);
- }
-
- /* clean up and exit */
- free_index(index);
- fclose(in);
- return 0;
-}