1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
import dataclasses
import datetime
import typing
import numpy as np
import pint
import szilagyi
from geopy import geocoders
from metpy import calc
from metpy import units as metunits
from windy import point_forecast, Windy
_L = point_forecast.Level
@dataclasses.dataclass
class Prediction:
time: datetime.datetime
latitude: float
longitude: float
temperature_difference: pint.Quantity
convective_cloud_depth: pint.Quantity
wind: pint.Quantity
low_clouds: float
swi: float
def json(self):
return {
"time": self.time.isoformat(),
"latitude": self.latitude,
"longitude": self.longitude,
"dt": self.temperature_difference.m_as("kelvin"),
"ccd": self.convective_cloud_depth.m_as("foot"),
"wind": self.wind.m_as("knot"),
"clouds": self.low_clouds,
"swi": self.swi,
}
@classmethod
def from_json(cls, json):
return cls(
datetime.datetime.fromisoformat(json["time"]),
json["latitude"],
json["longitude"],
json["dt"] * metunits.units.kelvin,
json["ccd"] * metunits.units.foot,
json["wind"] * metunits.units.knot,
json["clouds"],
json["swi"])
def calculate(config) -> typing.List[Prediction]:
units = metunits.units
windy = Windy(units)
def _calculate(latitude, longitude):
forecasts = windy.point_forecast(
config.key,
latitude, longitude,
point_forecast.Model.ICONEU,
("temp", "dewpoint", "wind", "pressure", "lclouds"),
tuple(_L))
for cast in forecasts:
dt = abs(cast.at("temp", _L.H850) - cast.at("temp", _L.SURFACE))
pressure, _ = calc.lcl(
cast.at("pressure", _L.SURFACE),
cast.at("temp", _L.SURFACE),
cast.at("dewpoint", _L.SURFACE))
lcl = calc.pressure_to_height_std(pressure)
pressure, _ = calc.el(cast["pressure"], cast["temp"], cast["dewpoint"])
el = calc.pressure_to_height_std(pressure)
ccd = (el - lcl).to(units.ft)
clouds = cast["lclouds"][0].magnitude / 100
try:
swi = szilagyi.calculate_swi(dt, ccd)
except ValueError:
swi = -10
wind = [cast.at("wind_u", _L.H850), cast.at("wind_v", _L.H850)]
wind = np.array([x.m_as("kts") for x in wind])
wind = np.linalg.norm(wind) * units.kts
yield Prediction(cast.timestamp, latitude, longitude, dt, ccd, wind, clouds, swi)
predictions = []
locator = geocoders.Nominatim(user_agent="waterspout-radar")
for location in config.locations:
found = locator.geocode(location)
predictions.extend(_calculate(found.latitude, found.longitude))
return predictions
|