summaryrefslogtreecommitdiff
path: root/szilagyi/nomogram.py
blob: 55276aea6bd4adfa71c0a2863fba74c844c4d89d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import math
from collections import deque

from . import _dataset


def look_downwards(data, x, start):
	for i in range(start, 0, -1):
		if data[i - 1][0] < x:
			break
	else:
		raise IndexError
	return i - 1


def look_upwards(data, x, start):
	for i in range(start, len(data)):
		if data[i + 1][0] > x:
			break
	else:
		raise IndexError
	return i


def find_segment(data, x):
	width = data[-1][0] - data[0][0]
	relative = x - data[0][0]
	candidate = math.floor(relative / width * len(data))
	look = look_downwards if data[candidate][0] > x else look_upwards  # May raise IndexError
	candidate = look(data, x, candidate)
	return candidate, candidate + 1


def find_boundary_curves(swis, x, y):
	segments = deque()
	for index, data in swis:
		i, j = find_segment(data, x)
		if data[i][1] > y and data[j][1] > y:
			segments.append((index, data, i, j))
			break
		if data[i][1] < y and data[j][1] < y:
			if segments:
				segments.popleft()
		segments.append((index, data, i, j))
	if len(segments) == 3:
		middle = segments[1][1]
		run = middle[j][0] - middle[i][0]
		if run == 0:
			raise RuntimeError  # tidy up dataset
		slope = (middle[j][1] - middle[i][1]) / run
		intercept = middle[j][1] - slope * middle[j][0]
		value = slope * x + intercept
		if value == y:
			raise RuntimeError  # Exactly on point; SWI == index
		if value < y:
			segments.popleft()
		else:
			segments.pop()
	if len(segments) == 1:
		raise RuntimeError  # SWI == -10
	return segments


def calculate_swi(x, y):
	low, high = find_boundary_curves(_dataset.INDICES, x, y)
	vec = _dataset.Vector(x, y)
	dist_to_low = min(abs(vec - p) for p in (low[1][low[2]], low[1][low[2]]))
	dist_to_high = min(abs(vec - p) for p in (high[1][high[2]], high[1][high[2]]))
	return dist_to_low / (dist_to_low + dist_to_high) * (high[0] - low[0]) + low[0]