diff options
Diffstat (limited to 'Stars45/Geometry.cpp')
-rw-r--r-- | Stars45/Geometry.cpp | 696 |
1 files changed, 0 insertions, 696 deletions
diff --git a/Stars45/Geometry.cpp b/Stars45/Geometry.cpp deleted file mode 100644 index 60b5c4d..0000000 --- a/Stars45/Geometry.cpp +++ /dev/null @@ -1,696 +0,0 @@ -/* Starshatter: The Open Source Project - Copyright (c) 2021-2022, Starshatter: The Open Source Project Contributors - Copyright (c) 2011-2012, Starshatter OpenSource Distribution Contributors - Copyright (c) 1997-2006, Destroyer Studios LLC. - - AUTHOR: John DiCamillo - - - OVERVIEW - ======== - Geometric Utilities -*/ - -#include "Geometry.h" - -// +--------------------------------------------------------------------+ - -void Rect::Inflate(int dx, int dy) -{ - x -= dx; - w += dx*2; - y -= dy; - h += dy*2; -} - -void Rect::Deflate(int dx, int dy) -{ - x += dx; - w -= dx*2; - y += dy; - h -= dy*2; -} - -void Rect::Inset(int l, int r, int t, int b) -{ - x += l; - y += t; - w -= l + r; - h -= t + b; -} - -int Rect::Contains(int ax, int ay) const -{ - if (ax < x) return 0; - if (ax > x+w) return 0; - if (ay < y) return 0; - if (ay > y+h) return 0; - - return 1; -} - -// +--------------------------------------------------------------------+ - -double -Point::Normalize() -{ - double scale = 1.0; - double len = length(); - - if (len) - scale /= len; - - x *= scale; - y *= scale; - z *= scale; - - return len; -} - -// +--------------------------------------------------------------------+ - -void -Point::SetElement(int i, double v) -{ - switch (i) { - case 0: x = v; break; - case 1: y = v; break; - case 2: z = v; break; - default: break; - } -} - -// +--------------------------------------------------------------------+ - -Point -Point::operator*(const Matrix& m) const -{ - Point result; - - result.x = (m.elem[0][0] * x) + (m.elem[1][0] * y) + (m.elem[2][0] * z); - result.y = (m.elem[0][1] * x) + (m.elem[1][1] * y) + (m.elem[2][1] * z); - result.z = (m.elem[0][2] * x) + (m.elem[1][2] * y) + (m.elem[2][2] * z); - - return result; -} - -// +--------------------------------------------------------------------+ - -double ClosestApproachTime(const Point& loc1, const Point& vel1, -const Point& loc2, const Point& vel2) -{ - double t = 0; - - Point D = loc1-loc2; - Point Dv = vel1-vel2; - - if (Dv.x || Dv.y || Dv.z) - t = -1 * (Dv*D) / (Dv*Dv); - - return t; -} - -// +--------------------------------------------------------------------+ - -float -Vec2::Normalize() -{ - float scale = 1.0f; - float len = length(); - - if (len) - scale /= len; - - x *= scale; - y *= scale; - - return len; -} - -// +--------------------------------------------------------------------+ - -float -Vec3::Normalize() -{ - float scale = 1.0f; - float len = length(); - - if (len) - scale /= len; - - x *= scale; - y *= scale; - z *= scale; - - return len; -} - -// +--------------------------------------------------------------------+ - -Vec3 -Vec3::operator*(const Matrix& m) const -{ - Vec3 result; - - result.x = (float) ((m.elem[0][0] * x) + (m.elem[1][0] * y) + (m.elem[2][0] * z)); - result.y = (float) ((m.elem[0][1] * x) + (m.elem[1][1] * y) + (m.elem[2][1] * z)); - result.z = (float) ((m.elem[0][2] * x) + (m.elem[1][2] * y) + (m.elem[2][2] * z)); - - return result; -} - -// +--------------------------------------------------------------------+ - -double ClosestApproachTime(const Vec3& loc1, const Vec3& vel1, -const Vec3& loc2, const Vec3& vel2) -{ - double t = 0; - - Point D = loc1-loc2; - Point Dv = vel1-vel2; - - if (Dv.x || Dv.y || Dv.z) - t = -1 * (Dv*D) / (Dv*Dv); - - return t; -} - -// +--------------------------------------------------------------------+ - -double -Quaternion::Normalize() -{ - double scale = 1.0; - double len = length(); - - if (len) - scale /= len; - - x *= scale; - y *= scale; - z *= scale; - w *= scale; - - return len; -} - -// +--------------------------------------------------------------------+ - -Matrix::Matrix() -{ - Identity(); -} - -Matrix::Matrix(const Matrix& m) -{ - CopyMemory(elem, m.elem, sizeof(elem)); -} - -Matrix::Matrix(const Point& vrt, const Point& vup, const Point& vpn) -{ - elem[0][0] = vrt.x; - elem[0][1] = vrt.y; - elem[0][2] = vrt.z; - - elem[1][0] = vup.x; - elem[1][1] = vup.y; - elem[1][2] = vup.z; - - elem[2][0] = vpn.x; - elem[2][1] = vpn.y; - elem[2][2] = vpn.z; -} - -// +--------------------------------------------------------------------+ - -Matrix& -Matrix::operator =(const Matrix& m) -{ - CopyMemory(elem, m.elem, sizeof(elem)); - - return *this; -} - -// +--------------------------------------------------------------------+ - -Matrix& -Matrix::operator*=(const Matrix& m) -{ - return *this = *this * m; -} - -// +--------------------------------------------------------------------+ - -void -Matrix::Identity() -{ - elem[0][0] = 1; - elem[0][1] = 0; - elem[0][2] = 0; - - elem[1][0] = 0; - elem[1][1] = 1; - elem[1][2] = 0; - - elem[2][0] = 0; - elem[2][1] = 0; - elem[2][2] = 1; -} - -// +--------------------------------------------------------------------+ - -inline void swap_elem(double& a, double& b) { double t=a; a=b; b=t; } - -void -Matrix::Transpose() -{ - swap_elem(elem[0][1], elem[1][0]); - swap_elem(elem[0][2], elem[2][0]); - swap_elem(elem[1][2], elem[2][1]); -} - -// +--------------------------------------------------------------------+ - -void -Matrix::Rotate(double roll, double pitch, double yaw) -{ - double e[3][3]; - CopyMemory(e, elem, sizeof(elem)); - - double sr = sin(roll); - double cr = cos(roll); - double sp = sin(pitch); - double cp = cos(pitch); - double sy = sin(yaw); - double cy = cos(yaw); - - double a,b,c; - - a = cy*cr; - b = cy*sr; - c = -sy; - - elem[0][0] = a*e[0][0] + b*e[1][0] + c*e[2][0]; - elem[0][1] = a*e[0][1] + b*e[1][1] + c*e[2][1]; - elem[0][2] = a*e[0][2] + b*e[1][2] + c*e[2][2]; - - a = cp*-sr + sp*sy*cr; - b = cp* cr + sp*sy*sr; - c = sp*cy; - - elem[1][0] = a*e[0][0] + b*e[1][0] + c*e[2][0]; - elem[1][1] = a*e[0][1] + b*e[1][1] + c*e[2][1]; - elem[1][2] = a*e[0][2] + b*e[1][2] + c*e[2][2]; - - a = -sp*-sr + cp*sy*cr; - b = -sp* cr + cp*sy*sr; - c = cp*cy; - - elem[2][0] = a*e[0][0] + b*e[1][0] + c*e[2][0]; - elem[2][1] = a*e[0][1] + b*e[1][1] + c*e[2][1]; - elem[2][2] = a*e[0][2] + b*e[1][2] + c*e[2][2]; -} - -// +--------------------------------------------------------------------+ - -void -Matrix::Roll(double roll) -{ - double s = sin(roll); - double c = cos(roll); - - double e00 = elem[0][0]; - double e01 = elem[0][1]; - double e02 = elem[0][2]; - double e10 = elem[1][0]; - double e11 = elem[1][1]; - double e12 = elem[1][2]; - - elem[0][0] = c*e00 + s*e10; - elem[0][1] = c*e01 + s*e11; - elem[0][2] = c*e02 + s*e12; - - elem[1][0] = -s*e00 + c*e10; - elem[1][1] = -s*e01 + c*e11; - elem[1][2] = -s*e02 + c*e12; -} - -// +--------------------------------------------------------------------+ - -void -Matrix::Pitch(double pitch) -{ - double s = sin(pitch); - double c = cos(pitch); - - double e10 = elem[1][0]; - double e11 = elem[1][1]; - double e12 = elem[1][2]; - double e20 = elem[2][0]; - double e21 = elem[2][1]; - double e22 = elem[2][2]; - - elem[1][0] = c*e10 + s*e20; - elem[1][1] = c*e11 + s*e21; - elem[1][2] = c*e12 + s*e22; - - elem[2][0] = -s*e10 + c*e20; - elem[2][1] = -s*e11 + c*e21; - elem[2][2] = -s*e12 + c*e22; -} - -// +--------------------------------------------------------------------+ - -void -Matrix::Yaw(double yaw) -{ - double s = sin(yaw); - double c = cos(yaw); - - double e00 = elem[0][0]; - double e01 = elem[0][1]; - double e02 = elem[0][2]; - double e20 = elem[2][0]; - double e21 = elem[2][1]; - double e22 = elem[2][2]; - - elem[0][0] = c*e00 - s*e20; - elem[0][1] = c*e01 - s*e21; - elem[0][2] = c*e02 - s*e22; - - elem[2][0] = s*e00 + c*e20; - elem[2][1] = s*e01 + c*e21; - elem[2][2] = s*e02 + c*e22; -} - -// +--------------------------------------------------------------------+ - -inline int sign(double d) { return (d >= 0); } - -void -Matrix::ComputeEulerAngles(double& roll, double& pitch, double& yaw) const -{ - double cy; - - yaw = asin(-elem[0][2]); - cy = cos(yaw); - roll = asin(elem[0][1] / cy); - pitch = asin(elem[1][2] / cy); - - if (sign(cos(roll)*cy) != sign(elem[0][0])) - roll = PI - roll; - - if (sign(cos(pitch)*cy) != sign(elem[2][2])) - pitch = PI - pitch; -} - -// +--------------------------------------------------------------------+ - -Matrix -Matrix::operator*(const Matrix& m) const -{ - Matrix r; - - r.elem[0][0] = elem[0][0]*m.elem[0][0] + elem[0][1]*m.elem[1][0] + elem[0][2]*m.elem[2][0]; - r.elem[0][1] = elem[0][0]*m.elem[0][1] + elem[0][1]*m.elem[1][1] + elem[0][2]*m.elem[2][1]; - r.elem[0][2] = elem[0][0]*m.elem[0][2] + elem[0][1]*m.elem[1][2] + elem[0][2]*m.elem[2][2]; - - r.elem[1][0] = elem[1][0]*m.elem[0][0] + elem[1][1]*m.elem[1][0] + elem[1][2]*m.elem[2][0]; - r.elem[1][1] = elem[1][0]*m.elem[0][1] + elem[1][1]*m.elem[1][1] + elem[1][2]*m.elem[2][1]; - r.elem[1][2] = elem[1][0]*m.elem[0][2] + elem[1][1]*m.elem[1][2] + elem[1][2]*m.elem[2][2]; - - r.elem[2][0] = elem[2][0]*m.elem[0][0] + elem[2][1]*m.elem[1][0] + elem[2][2]*m.elem[2][0]; - r.elem[2][1] = elem[2][0]*m.elem[0][1] + elem[2][1]*m.elem[1][1] + elem[2][2]*m.elem[2][1]; - r.elem[2][2] = elem[2][0]*m.elem[0][2] + elem[2][1]*m.elem[1][2] + elem[2][2]*m.elem[2][2]; - - return r; -} - -// +--------------------------------------------------------------------+ - -Point -Matrix::operator*(const Point& p) const -{ - Point result; - - result.x = (elem[0][0] * p.x) + (elem[0][1] * p.y) + (elem[0][2] * p.z); - result.y = (elem[1][0] * p.x) + (elem[1][1] * p.y) + (elem[1][2] * p.z); - result.z = (elem[2][0] * p.x) + (elem[2][1] * p.y) + (elem[2][2] * p.z); - - return result; -} - -// +--------------------------------------------------------------------+ - -Vec3 -Matrix::operator*(const Vec3& v) const -{ - Vec3 result; - - result.x = (float) ((elem[0][0] * v.x) + (elem[0][1] * v.y) + (elem[0][2] * v.z)); - result.y = (float) ((elem[1][0] * v.x) + (elem[1][1] * v.y) + (elem[1][2] * v.z)); - result.z = (float) ((elem[2][0] * v.x) + (elem[2][1] * v.y) + (elem[2][2] * v.z)); - - return result; -} - -// +--------------------------------------------------------------------+ - -double -Matrix::Cofactor(int i, int j) const -{ - int i1=0; - int i2=2; - int j1=0; - int j2=2; - - if (i==0) i1=1; else if (i==2) i2=1; - if (j==0) j1=1; else if (j==2) j2=1; - - double factor = elem[i1][j1]*elem[i2][j2] - elem[i1][j2]*elem[i2][j1]; - - if ((i+j) & 1) - factor *= -1; - - return factor; -} - -// +--------------------------------------------------------------------+ - -void -Matrix::Invert() -{ - double f[3][3]; - int i, j; - - for (i = 0; i < 3; i++) - for (j = 0; j < 3; j++) - f[i][j] = Cofactor(j,i); - - double det = elem[0][0] * f[0][0] + - elem[0][1] * f[1][0] + - elem[0][2] * f[2][0]; - - if (det != 0) { - double inv = 1/det; - - for (i = 0; i < 3; i++) - for (j = 0; j < 3; j++) - elem[i][j] = f[i][j] * inv; - } -} - -// +--------------------------------------------------------------------+ -// +--------------------------------------------------------------------+ -// +--------------------------------------------------------------------+ - -Plane::Plane() -: distance(0.0f) -{ } - -Plane::Plane(const Point& p0, const Point& p1, const Point& p2) -{ - Point d1 = p1 - p0; - Point d2 = p2 - p0; - - normal = (Vec3) d1.cross(d2); - normal.Normalize(); - - distance = (float) (normal * p0); -} - -Plane::Plane(const Vec3& v0, const Vec3& v1, const Vec3& v2) -{ - Vec3 d1 = v1 - v0; - Vec3 d2 = v2 - v0; - - normal = d1.cross(d2); - normal.Normalize(); - - distance = normal * v0; -} - -void Plane::Rotate(const Vec3& v0, const Matrix& m) -{ - normal = normal * m; - distance = normal * v0; -} - -void Plane::Translate(const Vec3& v0) -{ - distance = normal * v0; -} - -// +--------------------------------------------------------------------+ -// 3-D dot product. - -double DotProduct(const Point& a, const Point& b) -{ - return (a.x * b.x) + (a.y * b.y) + (a.z * b.z); -} - -// +--------------------------------------------------------------------+ -// 3-D cross product. - -void CrossProduct(const Point& a, const Point& b, Point& out) -{ - out.x = (a.y * b.z) - (a.z * b.y); - out.y = (a.z * b.x) - (a.x * b.z); - out.z = (a.x * b.y) - (a.y * b.x); -} - -// +--------------------------------------------------------------------+ -// Concatenate two 3x3 matrices. - -void MConcat(double in1[3][3], double in2[3][3], double out[3][3]) -{ - int i, j; - - for (i=0 ; i<3 ; i++) { - for (j=0 ; j<3 ; j++) { - out[i][j] = in1[i][0] * in2[0][j] + - in1[i][1] * in2[1][j] + - in1[i][2] * in2[2][j]; - } - } -} - -/* GRAPHICS GEMS II ---------------------------------------------------- -* -* lines_intersect: AUTHOR: Mukesh Prasad -* -* This function computes whether two line segments, -* respectively joining the input points (x1,y1) -- (x2,y2) -* and the input points (x3,y3) -- (x4,y4) intersect. -* If the lines intersect, the output variables x, y are -* set to coordinates of the point of intersection. -* -* All values are in integers. The returned value is rounded -* to the nearest integer point. -* -* If non-integral grid points are relevant, the function -* can easily be transformed by substituting floating point -* calculations instead of integer calculations. -* -* Entry -* x1, y1, x2, y2 Coordinates of endpoints of one segment. -* x3, y3, x4, y4 Coordinates of endpoints of other segment. -* -* Exit -* x, y Coordinates of intersection point. -* -* The value returned by the function is one of: -* -* DONT_INTERSECT 0 -* DO_INTERSECT 1 -* COLLINEAR 2 -* -* Error conditions: -* -* Depending upon the possible ranges, and particularly on 16-bit -* computers, care should be taken to protect from overflow. -* -* In the following code, 'long' values have been used for this -* purpose, instead of 'int'. -* -*/ - -#define DONT_INTERSECT 0 -#define DO_INTERSECT 1 -#define COLLINEAR 2 - -inline int SAME_SIGNS(double a, double b) -{ - return ((a>=0 && b>=0) || (a<0 && b<0)); -} - -int -lines_intersect( -/* 1st line segment */ double x1, double y1, double x2, double y2, -/* 2nd line segment */ double x3, double y3, double x4, double y4, -/* pt of intersect */ double& ix, double& iy) -{ - double a1, a2, b1, b2, c1, c2; /* Coefficients of line eqns. */ - double r1, r2, r3, r4; /* 'Sign' values */ - double denom, offset, num; /* Intermediate values */ - - /* Compute a1, b1, c1, where line joining points 1 and 2 - * is "a1 x + b1 y + c1 = 0". */ - - a1 = y2 - y1; - b1 = x1 - x2; - c1 = x2 * y1 - x1 * y2; - - /* Compute r3 and r4. */ - - r3 = a1 * x3 + b1 * y3 + c1; - r4 = a1 * x4 + b1 * y4 + c1; - - /* Check signs of r3 and r4. If both point 3 and point 4 lie on - * same side of line 1, the line segments do not intersect. */ - - if ( r3 != 0 && - r4 != 0 && - SAME_SIGNS( r3, r4 )) - return ( DONT_INTERSECT ); - - /* Compute a2, b2, c2 */ - - a2 = y4 - y3; - b2 = x3 - x4; - c2 = x4 * y3 - x3 * y4; - - /* Compute r1 and r2 */ - - r1 = a2 * x1 + b2 * y1 + c2; - r2 = a2 * x2 + b2 * y2 + c2; - - /* Check signs of r1 and r2. If both point 1 and point 2 lie - * on same side of second line segment, the line segments do - * not intersect. */ - - if ( r1 != 0 && - r2 != 0 && - SAME_SIGNS( r1, r2 )) - return ( DONT_INTERSECT ); - - /* Line segments intersect: compute intersection point. */ - - denom = a1 * b2 - a2 * b1; - if ( denom == 0 ) - return ( DONT_INTERSECT ); - offset = denom < 0 ? - denom / 2 : denom / 2; - - /* The denom/2 is to get rounding instead of truncating. It - * is added or subtracted to the numerator, depending upon the - * sign of the numerator. */ - - num = b1 * c2 - b2 * c1; - ix = ( num < 0 ? num - offset : num + offset ) / denom; - - num = a2 * c1 - a1 * c2; - iy = ( num < 0 ? num - offset : num + offset ) / denom; - - return ( DO_INTERSECT ); -} - |