1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
import csv
import math
import os
import re
from collections import deque
import matplotlib.pyplot as plot
def load(directory):
def _read(iterable):
for x, y in iterable:
yield float(x), float(y)
def _load(filename):
with open(filename) as fd:
reader = csv.reader(fd)
return list(_read(reader))
def _files(directory):
for file in os.listdir(directory):
match = re.match(r"SWI_(-?\d+)\.csv", file)
if match:
yield int(match.group(1)), os.path.join(directory, file)
return [(x, _load(y)) for x, y in sorted(_files(directory), key=lambda x: x[0])]
def look_downwards(data, x, start):
for i in range(start, 0, -1):
if data[i - 1][0] < x:
break
else:
raise IndexError
return i - 1
def look_upwards(data, x, start):
for i in range(start, len(data)):
if data[i + 1][0] > x:
break
else:
raise IndexError
return i
def find_segment(data, x):
width = data[-1][0] - data[0][0]
relative = x - data[0][0]
candidate = math.floor(relative / width * len(data))
look = look_downwards if data[candidate][0] > x else look_upwards # May raise IndexError
candidate = look(data, x, candidate)
return candidate, candidate + 1
def find_boundary_curves(swis, x, y):
segments = deque()
for index, data in swis:
i, j = find_segment(data, x)
if data[i][1] > y and data[j][1] > y:
segments.append((index, data, i, j))
break
if data[i][1] < y and data[j][1] < y:
if segments:
segments.popleft()
segments.append((index, data, i, j))
if len(segments) == 3:
middle = segments[1][1]
run = middle[j][0] - middle[i][0]
if run == 0:
raise RuntimeError # tidy up dataset
slope = (middle[j][1] - middle[i][1]) / run
intercept = middle[j][1] - slope * middle[j][0]
value = slope * x + intercept
if value == y:
raise RuntimeError # Exactly on point; SWI == index
if value < y:
segments.popleft()
else:
segments.pop()
if len(segments) == 1:
raise RuntimeError # SWI == -10
return segments
def dist(x1, y1, x2, y2):
return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
def calculate_swi(segments, x, y):
low = segments[0]
high = segments[1]
dist_to_low = min(dist(p[0], p[1], x, y) for p in (low[1][low[2]], low[1][low[2]]))
dist_to_high = min(dist(p[0], p[1], x, y) for p in (high[1][high[2]], high[1][high[2]]))
return dist_to_low / (dist_to_low + dist_to_high) * (high[0] - low[0]) + low[0]
swis = load("dataset")
def _swi(x, y): # dt, depth
segments = find_boundary_curves(swis, x, y)
return calculate_swi(segments, x, y)
def grid(start, end, steps):
step = (end - start) / steps
i = start
while i <= end:
yield i
i += step
C = []
X = list(grid(0, 40, 1000))
Y = list(grid(0, 50000, 1000))
for y_scaled in range(0, 1000):
y = y_scaled * 50
row = []
for x_scaled in range(0, 1000):
x = x_scaled / 25
try:
swi = _swi(x, y)
except (IndexError, RuntimeError):
swi = -10
row.append(swi)
C.append(row)
plot.pcolormesh(X, Y, C, cmap='viridis', vmin=-10, vmax=10, rasterized=True)
for _, data in swis:
plot.plot([x[0] for x in data], [x[1] for x in data])
plot.show()
|