import math from collections import deque from . import _dataset def look_downwards(data, x, start): for i in range(start, 0, -1): if data[i - 1].x < x: break else: raise IndexError return i - 1 def look_upwards(data, x, start): for i in range(start, len(data)): if data[i + 1].x > x: break else: raise IndexError return i def find_segment(data, x): width = data[-1].x - data[0].x relative = x - data[0].x candidate = math.floor(relative / width * len(data)) look = look_downwards if data[candidate].x > x else look_upwards # May raise IndexError candidate = look(data, x, candidate) return candidate, candidate + 1 def find_boundary_curves(swis, x, y): segments = deque() for index, data in swis: i, j = find_segment(data, x) if data[i].y > y and data[j].y > y: segments.append((index, data, i, j)) break if data[i].y < y and data[j].y < y: if segments: segments.popleft() segments.append((index, data, i, j)) if len(segments) == 3: middle = segments[1][1] run = middle[j].x - middle[i].x if run == 0: raise RuntimeError # tidy up dataset slope = (middle[j].y - middle[i].y) / run intercept = middle[j].y - slope * middle[j].x value = slope * x + intercept if value == y: raise RuntimeError # Exactly on point; SWI == index if value < y: segments.popleft() else: segments.pop() if len(segments) == 1: raise RuntimeError # SWI == -10 return segments def calculate_swi(x, y): low, high = find_boundary_curves(_dataset.INDICES, x, y) vec = _dataset.Vector(x, y) dist_to_low = min(abs(vec - p) for p in (low[1][low[2]], low[1][low[2]])) dist_to_high = min(abs(vec - p) for p in (high[1][high[2]], high[1][high[2]])) return dist_to_low / (dist_to_low + dist_to_high) * (high[0] - low[0]) + low[0]