/* Starshatter OpenSource Distribution Copyright (c) 1997-2004, Destroyer Studios LLC. All Rights Reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name "Destroyer Studios" nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. SUBSYSTEM: Stars.exe FILE: SteerAI.cpp AUTHOR: John DiCamillo OVERVIEW ======== Steering (low-level) Artificial Intelligence class */ #include "MemDebug.h" #include "SteerAI.h" #include "SeekerAI.h" #include "FighterAI.h" #include "StarshipAI.h" #include "GroundAI.h" #include "System.h" #include "Game.h" #include "Physical.h" // +----------------------------------------------------------------------+ Steer Steer::operator+(const Steer& s) const { return Steer(yaw+s.yaw, pitch+s.pitch, roll+s.roll, (brake>s.brake)?brake:s.brake); } Steer Steer::operator-(const Steer& s) const { return Steer(yaw-s.yaw, pitch-s.pitch, roll-s.roll, (brake brake) brake = s.brake; if (s.stop) stop = 1; return *this; } Steer& Steer::operator-=(const Steer& s) { yaw -= s.yaw; pitch -= s.pitch; roll -= s.roll; if (s.brake < brake) brake = s.brake; if (s.stop) stop = 1; return *this; } double Steer::Magnitude() const { return sqrt(yaw*yaw + pitch*pitch); } // +--------------------------------------------------------------------+ Director* SteerAI::Create(SimObject* self, int type) { switch (type) { case SEEKER: return new(__FILE__,__LINE__) SeekerAI(self); break; case STARSHIP: return new(__FILE__,__LINE__) StarshipAI(self); break; case GROUND: return new(__FILE__,__LINE__) GroundAI(self); break; default: case FIGHTER: return new(__FILE__,__LINE__) FighterAI(self); break; } } // +----------------------------------------------------------------------+ SteerAI::SteerAI(SimObject* ship) : self(ship), target(0), subtarget(0), other(0), distance(0.0), evade_time(0), objective(0.0f, 0.0f, 0.0f) { seek_gain = 20; seek_damp = 0.5; for (int i = 0; i < 3; i++) az[i] = el[i] = 0; } // +--------------------------------------------------------------------+ SteerAI::~SteerAI() { } // +--------------------------------------------------------------------+ void SteerAI::SetTarget(SimObject* targ, System* sub) { if (target != targ) { target = targ; if (target) Observe(target); } subtarget = sub; } void SteerAI::DropTarget(double dtime) { SetTarget(0); } // +--------------------------------------------------------------------+ bool SteerAI::Update(SimObject* obj) { if (obj == target) { target = 0; subtarget = 0; } if (obj == other) { other = 0; } return SimObserver::Update(obj); } const char* SteerAI::GetObserverName() const { static char name[64]; sprintf_s(name, "SteerAI(%s)", self->Name()); return name; } // +--------------------------------------------------------------------+ Point SteerAI::ClosingVelocity() { if (self) { if (target) return self->Velocity() - target->Velocity(); else return self->Velocity(); } return Point(1, 0, 0); } void SteerAI::FindObjective() { if (!self || !target) return; Point cv = ClosingVelocity(); double cvl = cv.length(); double time = 0; if (cvl > 5) { // distance from self to target: distance = Point(target->Location() - self->Location()).length(); // time to reach target: time = distance / cvl; // where the target will be when we reach it: Point run_vec = target->Velocity(); obj_w = target->Location() + (run_vec * time); } else { obj_w = target->Location(); } // subsystem offset: if (subtarget) { Point offset = target->Location() - subtarget->MountLocation(); obj_w -= offset; } distance = Point(obj_w - self->Location()).length(); if (cvl > 5) time = distance / cvl; // where we will be when the target gets there: Point self_dest = self->Location() + cv * time; Point err = obj_w - self_dest; obj_w += err; // transform into camera coords: objective = Transform(obj_w); objective.Normalize(); distance = Point(obj_w - self->Location()).length(); } Point SteerAI::Transform(const Point& pt) { Point obj_t = pt - self->Location(); Point result; if (self->FlightPathYawAngle() != 0 || self->FlightPathPitchAngle() != 0) { double az = self->FlightPathYawAngle(); double el = self->FlightPathPitchAngle(); const double MAX_ANGLE = 15*DEGREES; const double MIN_ANGLE = 3*DEGREES; if (az > MAX_ANGLE) az = MAX_ANGLE; else if (az < -MAX_ANGLE) az = -MAX_ANGLE; else if (az > MIN_ANGLE) az = MIN_ANGLE + (az-MIN_ANGLE)/2; else if (az < -MIN_ANGLE) az = -MIN_ANGLE + (az+MIN_ANGLE)/2; if (el > MAX_ANGLE) el = MAX_ANGLE; else if (el < -MAX_ANGLE) el = -MAX_ANGLE; else if (el > MIN_ANGLE) el = MIN_ANGLE + (el-MIN_ANGLE)/2; else if (el < -MIN_ANGLE) el = -MIN_ANGLE + (el+MIN_ANGLE)/2; Camera cam; cam.Clone(self->Cam()); cam.Yaw(az); cam.Pitch(-el); result = Point(obj_t * cam.vrt(), obj_t * cam.vup(), obj_t * cam.vpn()); } else { Camera& cam = (Camera&) self->Cam(); // cast away const result = Point(obj_t * cam.vrt(), obj_t * cam.vup(), obj_t * cam.vpn()); } return result; } Point SteerAI::AimTransform(const Point& pt) { Camera& cam = (Camera&) self->Cam(); // cast away const Point obj_t = pt - self->Location(); Point result = Point(obj_t * cam.vrt(), obj_t * cam.vup(), obj_t * cam.vpn()); return result; } // +--------------------------------------------------------------------+ void SteerAI::Navigator() { accumulator.Clear(); magnitude = 0; } int SteerAI::Accumulate(const Steer& steer) { int overflow = 0; double mag = steer.Magnitude(); if (magnitude + mag > 1) { overflow = 1; double scale = (1 - magnitude) / mag; accumulator += steer * scale; magnitude = 1; if (seeking) { az[0] *= scale; el[0] *= scale; seeking = 0; } } else { accumulator += steer; magnitude += mag; } return overflow; } // +--------------------------------------------------------------------+ Steer SteerAI::Seek(const Point& point) { Steer s; // advance memory pipeline: az[2] = az[1]; az[1] = az[0]; el[2] = el[1]; el[1] = el[0]; // approach if (point.z > 0.0f) { az[0] = atan2(fabs(point.x), point.z) * seek_gain; el[0] = atan2(fabs(point.y), point.z) * seek_gain; if (point.x < 0) az[0] = -az[0]; if (point.y > 0) el[0] = -el[0]; s.yaw = az[0] - seek_damp * (az[1] + az[2] * 0.5); s.pitch = el[0] - seek_damp * (el[1] + el[2] * 0.5); } // reverse else { if (point.x > 0) s.yaw = 1.0f; else s.yaw = -1.0f; s.pitch = -point.y * 0.5f; } seeking = 1; return s; } // +--------------------------------------------------------------------+ Steer SteerAI::Flee(const Point& pt) { Steer s; Point point = pt; point.Normalize(); // approach if (point.z > 0.0f) { if (point.x > 0) s.yaw = -1.0f; else s.yaw = 1.0f; } // flee else { s.yaw = -point.x; s.pitch = point.y; } return s; } // +--------------------------------------------------------------------+ Steer SteerAI::Avoid(const Point& point, float radius) { Steer s; if (point.z > 0) { double ax = radius - fabs(point.x); double ay = radius - fabs(point.y); // go around? if (ax < ay) { s.yaw = atan2(ax, point.z) * seek_gain; if (point.x > 0) s.yaw = -s.yaw; } // go over/under: else { s.pitch = atan2(ay, point.z) * seek_gain; if (point.y < 0) s.pitch = -s.pitch; } } return s; } // +--------------------------------------------------------------------+ Steer SteerAI::Evade(const Point& point, const Point& vel) { Steer evade; if (Game::GameTime() - evade_time > 1250) { evade_time = Game::GameTime(); int direction = (rand()>>9) & 0x07; switch (direction) { default: case 0: evade.yaw = 0; evade.pitch = -0.5; break; case 1: evade.yaw = 0; evade.pitch = -1.0; break; case 2: evade.yaw = 1; evade.pitch = -0.3; break; case 3: evade.yaw = 1; evade.pitch = -0.6; break; case 4: evade.yaw = 1; evade.pitch = -1.0; break; case 5: evade.yaw = -1; evade.pitch = -0.3; break; case 6: evade.yaw = -1; evade.pitch = -0.6; break; case 7: evade.yaw = -1; evade.pitch = -1.0; break; } } return evade; }