/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /* * OPCODE - Optimized Collision Detection * Copyright (C) 2001 Pierre Terdiman * Homepage: http://www.codercorner.com/Opcode.htm */ /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Contains code for optimized trees. * \file OPC_OptimizedTree.h * \author Pierre Terdiman * \date March, 20, 2001 */ /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Include Guard #ifndef __OPC_OPTIMIZEDTREE_H__ #define __OPC_OPTIMIZEDTREE_H__ //! Common interface for a node of an implicit tree #define IMPLEMENT_IMPLICIT_NODE(base_class, volume) \ public: \ /* Constructor / Destructor */ \ inline_ base_class() : mData(0) {} \ inline_ ~base_class() {} \ /* Leaf test */ \ inline_ BOOL IsLeaf() const { return mData&1; } \ /* Data access */ \ inline_ const base_class* GetPos() const { return (base_class*)mData; } \ inline_ const base_class* GetNeg() const { return ((base_class*)mData)+1; } \ inline_ udword GetPrimitive() const { return (mData>>1); } \ /* Stats */ \ inline_ udword GetNodeSize() const { return SIZEOFOBJECT; } \ \ volume mAABB; \ udword mData; //! Common interface for a node of a no-leaf tree #define IMPLEMENT_NOLEAF_NODE(base_class, volume) \ public: \ /* Constructor / Destructor */ \ inline_ base_class() : mPosData(0), mNegData(0) {} \ inline_ ~base_class() {} \ /* Leaf tests */ \ inline_ BOOL HasPosLeaf() const { return mPosData&1; } \ inline_ BOOL HasNegLeaf() const { return mNegData&1; } \ /* Data access */ \ inline_ const base_class* GetPos() const { return (base_class*)mPosData; } \ inline_ const base_class* GetNeg() const { return (base_class*)mNegData; } \ inline_ udword GetPosPrimitive() const { return (mPosData>>1); } \ inline_ udword GetNegPrimitive() const { return (mNegData>>1); } \ /* Stats */ \ inline_ udword GetNodeSize() const { return SIZEOFOBJECT; } \ \ volume mAABB; \ udword mPosData; \ udword mNegData; class OPCODE_API AABBCollisionNode { IMPLEMENT_IMPLICIT_NODE(AABBCollisionNode, CollisionAABB) inline_ float GetVolume() const { return mAABB.mExtents.x * mAABB.mExtents.y * mAABB.mExtents.z; } inline_ float GetSize() const { return mAABB.mExtents.SquareMagnitude(); } inline_ udword GetRadius() const { udword* Bits = (udword*)&mAABB.mExtents.x; udword Max = Bits[0]; if(Bits[1]>Max) Max = Bits[1]; if(Bits[2]>Max) Max = Bits[2]; return Max; } // NB: using the square-magnitude or the true volume of the box, seems to yield better results // (assuming UNC-like informed traversal methods). I borrowed this idea from PQP. The usual "size" // otherwise, is the largest box extent. In SOLID that extent is computed on-the-fly each time it's // needed (the best approach IMHO). In RAPID the rotation matrix is permuted so that Extent[0] is // always the greatest, which saves looking for it at runtime. On the other hand, it yields matrices // whose determinant is not 1, i.e. you can't encode them anymore as unit quaternions. Not a very // good strategy. }; class OPCODE_API AABBQuantizedNode { IMPLEMENT_IMPLICIT_NODE(AABBQuantizedNode, QuantizedAABB) inline_ uword GetSize() const { const uword* Bits = mAABB.mExtents; uword Max = Bits[0]; if(Bits[1]>Max) Max = Bits[1]; if(Bits[2]>Max) Max = Bits[2]; return Max; } // NB: for quantized nodes I don't feel like computing a square-magnitude with integers all // over the place.......! }; class OPCODE_API AABBNoLeafNode { IMPLEMENT_NOLEAF_NODE(AABBNoLeafNode, CollisionAABB) }; class OPCODE_API AABBQuantizedNoLeafNode { IMPLEMENT_NOLEAF_NODE(AABBQuantizedNoLeafNode, QuantizedAABB) }; //! Common interface for a collision tree #define IMPLEMENT_COLLISION_TREE(base_class, node) \ public: \ /* Constructor / Destructor */ \ base_class(); \ virtual ~base_class(); \ /* Builds from a standard tree */ \ override(AABBOptimizedTree) bool Build(AABBTree* tree); \ /* Refits the tree */ \ override(AABBOptimizedTree) bool Refit(const MeshInterface* mesh_interface); \ /* Walks the tree */ \ override(AABBOptimizedTree) bool Walk(GenericWalkingCallback callback, void* user_data) const; \ /* Data access */ \ inline_ const node* GetNodes() const { return mNodes; } \ /* Stats */ \ override(AABBOptimizedTree) udword GetUsedBytes() const { return mNbNodes*sizeof(node); } \ private: \ node* mNodes; typedef bool (*GenericWalkingCallback) (const void* current, void* user_data); class OPCODE_API AABBOptimizedTree { public: // Constructor / Destructor AABBOptimizedTree() : mNbNodes (0) {} virtual ~AABBOptimizedTree() {} /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Builds the collision tree from a generic AABB tree. * \param tree [in] generic AABB tree * \return true if success */ /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// virtual bool Build(AABBTree* tree) = 0; /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Refits the collision tree after vertices have been modified. * \param mesh_interface [in] mesh interface for current model * \return true if success */ /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// virtual bool Refit(const MeshInterface* mesh_interface) = 0; /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Walks the tree and call the user back for each node. * \param callback [in] walking callback * \param user_data [in] callback's user data * \return true if success */ /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// virtual bool Walk(GenericWalkingCallback callback, void* user_data) const = 0; // Data access virtual udword GetUsedBytes() const = 0; inline_ udword GetNbNodes() const { return mNbNodes; } protected: udword mNbNodes; }; class OPCODE_API AABBCollisionTree : public AABBOptimizedTree { IMPLEMENT_COLLISION_TREE(AABBCollisionTree, AABBCollisionNode) }; class OPCODE_API AABBNoLeafTree : public AABBOptimizedTree { IMPLEMENT_COLLISION_TREE(AABBNoLeafTree, AABBNoLeafNode) }; class OPCODE_API AABBQuantizedTree : public AABBOptimizedTree { IMPLEMENT_COLLISION_TREE(AABBQuantizedTree, AABBQuantizedNode) public: IcePoint mCenterCoeff; IcePoint mExtentsCoeff; }; class OPCODE_API AABBQuantizedNoLeafTree : public AABBOptimizedTree { IMPLEMENT_COLLISION_TREE(AABBQuantizedNoLeafTree, AABBQuantizedNoLeafNode) public: IcePoint mCenterCoeff; IcePoint mExtentsCoeff; }; #endif // __OPC_OPTIMIZEDTREE_H__