// Following code from Magic-Software (http://www.magic-software.com/) // A bit modified for Opcode inline_ float OPC_PointAABBSqrDist(const IcePoint& Point, const IcePoint& center, const IcePoint& extents) { // Compute coordinates of IcePoint in box coordinate system IcePoint Closest = Point - center; float SqrDistance = 0.0f; if(Closest.x < -extents.x) { float Delta = Closest.x + extents.x; SqrDistance += Delta*Delta; } else if(Closest.x > extents.x) { float Delta = Closest.x - extents.x; SqrDistance += Delta*Delta; } if(Closest.y < -extents.y) { float Delta = Closest.y + extents.y; SqrDistance += Delta*Delta; } else if(Closest.y > extents.y) { float Delta = Closest.y - extents.y; SqrDistance += Delta*Delta; } if(Closest.z < -extents.z) { float Delta = Closest.z + extents.z; SqrDistance += Delta*Delta; } else if(Closest.z > extents.z) { float Delta = Closest.z - extents.z; SqrDistance += Delta*Delta; } return SqrDistance; } static void Face(int i0, int i1, int i2, IcePoint& rkPnt, const IcePoint& rkDir, const IcePoint& extents, const IcePoint& rkPmE, float* pfLParam, float& rfSqrDistance) { IcePoint kPpE; float fLSqr, fInv, fTmp, fParam, fT, fDelta; kPpE[i1] = rkPnt[i1] + extents[i1]; kPpE[i2] = rkPnt[i2] + extents[i2]; if(rkDir[i0]*kPpE[i1] >= rkDir[i1]*rkPmE[i0]) { if(rkDir[i0]*kPpE[i2] >= rkDir[i2]*rkPmE[i0]) { // v[i1] >= -e[i1], v[i2] >= -e[i2] (distance = 0) if(pfLParam) { rkPnt[i0] = extents[i0]; fInv = 1.0f/rkDir[i0]; rkPnt[i1] -= rkDir[i1]*rkPmE[i0]*fInv; rkPnt[i2] -= rkDir[i2]*rkPmE[i0]*fInv; *pfLParam = -rkPmE[i0]*fInv; } } else { // v[i1] >= -e[i1], v[i2] < -e[i2] fLSqr = rkDir[i0]*rkDir[i0] + rkDir[i2]*rkDir[i2]; fTmp = fLSqr*kPpE[i1] - rkDir[i1]*(rkDir[i0]*rkPmE[i0] + rkDir[i2]*kPpE[i2]); if(fTmp <= 2.0f*fLSqr*extents[i1]) { fT = fTmp/fLSqr; fLSqr += rkDir[i1]*rkDir[i1]; fTmp = kPpE[i1] - fT; fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*fTmp + rkDir[i2]*kPpE[i2]; fParam = -fDelta/fLSqr; rfSqrDistance += rkPmE[i0]*rkPmE[i0] + fTmp*fTmp + kPpE[i2]*kPpE[i2] + fDelta*fParam; if(pfLParam) { *pfLParam = fParam; rkPnt[i0] = extents[i0]; rkPnt[i1] = fT - extents[i1]; rkPnt[i2] = -extents[i2]; } } else { fLSqr += rkDir[i1]*rkDir[i1]; fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*rkPmE[i1] + rkDir[i2]*kPpE[i2]; fParam = -fDelta/fLSqr; rfSqrDistance += rkPmE[i0]*rkPmE[i0] + rkPmE[i1]*rkPmE[i1] + kPpE[i2]*kPpE[i2] + fDelta*fParam; if(pfLParam) { *pfLParam = fParam; rkPnt[i0] = extents[i0]; rkPnt[i1] = extents[i1]; rkPnt[i2] = -extents[i2]; } } } } else { if ( rkDir[i0]*kPpE[i2] >= rkDir[i2]*rkPmE[i0] ) { // v[i1] < -e[i1], v[i2] >= -e[i2] fLSqr = rkDir[i0]*rkDir[i0] + rkDir[i1]*rkDir[i1]; fTmp = fLSqr*kPpE[i2] - rkDir[i2]*(rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1]); if(fTmp <= 2.0f*fLSqr*extents[i2]) { fT = fTmp/fLSqr; fLSqr += rkDir[i2]*rkDir[i2]; fTmp = kPpE[i2] - fT; fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1] + rkDir[i2]*fTmp; fParam = -fDelta/fLSqr; rfSqrDistance += rkPmE[i0]*rkPmE[i0] + kPpE[i1]*kPpE[i1] + fTmp*fTmp + fDelta*fParam; if(pfLParam) { *pfLParam = fParam; rkPnt[i0] = extents[i0]; rkPnt[i1] = -extents[i1]; rkPnt[i2] = fT - extents[i2]; } } else { fLSqr += rkDir[i2]*rkDir[i2]; fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1] + rkDir[i2]*rkPmE[i2]; fParam = -fDelta/fLSqr; rfSqrDistance += rkPmE[i0]*rkPmE[i0] + kPpE[i1]*kPpE[i1] + rkPmE[i2]*rkPmE[i2] + fDelta*fParam; if(pfLParam) { *pfLParam = fParam; rkPnt[i0] = extents[i0]; rkPnt[i1] = -extents[i1]; rkPnt[i2] = extents[i2]; } } } else { // v[i1] < -e[i1], v[i2] < -e[i2] fLSqr = rkDir[i0]*rkDir[i0]+rkDir[i2]*rkDir[i2]; fTmp = fLSqr*kPpE[i1] - rkDir[i1]*(rkDir[i0]*rkPmE[i0] + rkDir[i2]*kPpE[i2]); if(fTmp >= 0.0f) { // v[i1]-edge is closest if ( fTmp <= 2.0f*fLSqr*extents[i1] ) { fT = fTmp/fLSqr; fLSqr += rkDir[i1]*rkDir[i1]; fTmp = kPpE[i1] - fT; fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*fTmp + rkDir[i2]*kPpE[i2]; fParam = -fDelta/fLSqr; rfSqrDistance += rkPmE[i0]*rkPmE[i0] + fTmp*fTmp + kPpE[i2]*kPpE[i2] + fDelta*fParam; if(pfLParam) { *pfLParam = fParam; rkPnt[i0] = extents[i0]; rkPnt[i1] = fT - extents[i1]; rkPnt[i2] = -extents[i2]; } } else { fLSqr += rkDir[i1]*rkDir[i1]; fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*rkPmE[i1] + rkDir[i2]*kPpE[i2]; fParam = -fDelta/fLSqr; rfSqrDistance += rkPmE[i0]*rkPmE[i0] + rkPmE[i1]*rkPmE[i1] + kPpE[i2]*kPpE[i2] + fDelta*fParam; if(pfLParam) { *pfLParam = fParam; rkPnt[i0] = extents[i0]; rkPnt[i1] = extents[i1]; rkPnt[i2] = -extents[i2]; } } return; } fLSqr = rkDir[i0]*rkDir[i0] + rkDir[i1]*rkDir[i1]; fTmp = fLSqr*kPpE[i2] - rkDir[i2]*(rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1]); if(fTmp >= 0.0f) { // v[i2]-edge is closest if(fTmp <= 2.0f*fLSqr*extents[i2]) { fT = fTmp/fLSqr; fLSqr += rkDir[i2]*rkDir[i2]; fTmp = kPpE[i2] - fT; fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1] + rkDir[i2]*fTmp; fParam = -fDelta/fLSqr; rfSqrDistance += rkPmE[i0]*rkPmE[i0] + kPpE[i1]*kPpE[i1] + fTmp*fTmp + fDelta*fParam; if(pfLParam) { *pfLParam = fParam; rkPnt[i0] = extents[i0]; rkPnt[i1] = -extents[i1]; rkPnt[i2] = fT - extents[i2]; } } else { fLSqr += rkDir[i2]*rkDir[i2]; fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1] + rkDir[i2]*rkPmE[i2]; fParam = -fDelta/fLSqr; rfSqrDistance += rkPmE[i0]*rkPmE[i0] + kPpE[i1]*kPpE[i1] + rkPmE[i2]*rkPmE[i2] + fDelta*fParam; if(pfLParam) { *pfLParam = fParam; rkPnt[i0] = extents[i0]; rkPnt[i1] = -extents[i1]; rkPnt[i2] = extents[i2]; } } return; } // (v[i1],v[i2])-corner is closest fLSqr += rkDir[i2]*rkDir[i2]; fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1] + rkDir[i2]*kPpE[i2]; fParam = -fDelta/fLSqr; rfSqrDistance += rkPmE[i0]*rkPmE[i0] + kPpE[i1]*kPpE[i1] + kPpE[i2]*kPpE[i2] + fDelta*fParam; if(pfLParam) { *pfLParam = fParam; rkPnt[i0] = extents[i0]; rkPnt[i1] = -extents[i1]; rkPnt[i2] = -extents[i2]; } } } } static void CaseNoZeros(IcePoint& rkPnt, const IcePoint& rkDir, const IcePoint& extents, float* pfLParam, float& rfSqrDistance) { IcePoint kPmE(rkPnt.x - extents.x, rkPnt.y - extents.y, rkPnt.z - extents.z); float fProdDxPy, fProdDyPx, fProdDzPx, fProdDxPz, fProdDzPy, fProdDyPz; fProdDxPy = rkDir.x*kPmE.y; fProdDyPx = rkDir.y*kPmE.x; if(fProdDyPx >= fProdDxPy) { fProdDzPx = rkDir.z*kPmE.x; fProdDxPz = rkDir.x*kPmE.z; if(fProdDzPx >= fProdDxPz) { // line intersects x = e0 Face(0, 1, 2, rkPnt, rkDir, extents, kPmE, pfLParam, rfSqrDistance); } else { // line intersects z = e2 Face(2, 0, 1, rkPnt, rkDir, extents, kPmE, pfLParam, rfSqrDistance); } } else { fProdDzPy = rkDir.z*kPmE.y; fProdDyPz = rkDir.y*kPmE.z; if(fProdDzPy >= fProdDyPz) { // line intersects y = e1 Face(1, 2, 0, rkPnt, rkDir, extents, kPmE, pfLParam, rfSqrDistance); } else { // line intersects z = e2 Face(2, 0, 1, rkPnt, rkDir, extents, kPmE, pfLParam, rfSqrDistance); } } } static void Case0(int i0, int i1, int i2, IcePoint& rkPnt, const IcePoint& rkDir, const IcePoint& extents, float* pfLParam, float& rfSqrDistance) { float fPmE0 = rkPnt[i0] - extents[i0]; float fPmE1 = rkPnt[i1] - extents[i1]; float fProd0 = rkDir[i1]*fPmE0; float fProd1 = rkDir[i0]*fPmE1; float fDelta, fInvLSqr, fInv; if(fProd0 >= fProd1) { // line intersects P[i0] = e[i0] rkPnt[i0] = extents[i0]; float fPpE1 = rkPnt[i1] + extents[i1]; fDelta = fProd0 - rkDir[i0]*fPpE1; if(fDelta >= 0.0f) { fInvLSqr = 1.0f/(rkDir[i0]*rkDir[i0] + rkDir[i1]*rkDir[i1]); rfSqrDistance += fDelta*fDelta*fInvLSqr; if(pfLParam) { rkPnt[i1] = -extents[i1]; *pfLParam = -(rkDir[i0]*fPmE0+rkDir[i1]*fPpE1)*fInvLSqr; } } else { if(pfLParam) { fInv = 1.0f/rkDir[i0]; rkPnt[i1] -= fProd0*fInv; *pfLParam = -fPmE0*fInv; } } } else { // line intersects P[i1] = e[i1] rkPnt[i1] = extents[i1]; float fPpE0 = rkPnt[i0] + extents[i0]; fDelta = fProd1 - rkDir[i1]*fPpE0; if(fDelta >= 0.0f) { fInvLSqr = 1.0f/(rkDir[i0]*rkDir[i0] + rkDir[i1]*rkDir[i1]); rfSqrDistance += fDelta*fDelta*fInvLSqr; if(pfLParam) { rkPnt[i0] = -extents[i0]; *pfLParam = -(rkDir[i0]*fPpE0+rkDir[i1]*fPmE1)*fInvLSqr; } } else { if(pfLParam) { fInv = 1.0f/rkDir[i1]; rkPnt[i0] -= fProd1*fInv; *pfLParam = -fPmE1*fInv; } } } if(rkPnt[i2] < -extents[i2]) { fDelta = rkPnt[i2] + extents[i2]; rfSqrDistance += fDelta*fDelta; rkPnt[i2] = -extents[i2]; } else if ( rkPnt[i2] > extents[i2] ) { fDelta = rkPnt[i2] - extents[i2]; rfSqrDistance += fDelta*fDelta; rkPnt[i2] = extents[i2]; } } static void Case00(int i0, int i1, int i2, IcePoint& rkPnt, const IcePoint& rkDir, const IcePoint& extents, float* pfLParam, float& rfSqrDistance) { float fDelta; if(pfLParam) *pfLParam = (extents[i0] - rkPnt[i0])/rkDir[i0]; rkPnt[i0] = extents[i0]; if(rkPnt[i1] < -extents[i1]) { fDelta = rkPnt[i1] + extents[i1]; rfSqrDistance += fDelta*fDelta; rkPnt[i1] = -extents[i1]; } else if(rkPnt[i1] > extents[i1]) { fDelta = rkPnt[i1] - extents[i1]; rfSqrDistance += fDelta*fDelta; rkPnt[i1] = extents[i1]; } if(rkPnt[i2] < -extents[i2]) { fDelta = rkPnt[i2] + extents[i2]; rfSqrDistance += fDelta*fDelta; rkPnt[i1] = -extents[i2]; } else if(rkPnt[i2] > extents[i2]) { fDelta = rkPnt[i2] - extents[i2]; rfSqrDistance += fDelta*fDelta; rkPnt[i2] = extents[i2]; } } static void Case000(IcePoint& rkPnt, const IcePoint& extents, float& rfSqrDistance) { float fDelta; if(rkPnt.x < -extents.x) { fDelta = rkPnt.x + extents.x; rfSqrDistance += fDelta*fDelta; rkPnt.x = -extents.x; } else if(rkPnt.x > extents.x) { fDelta = rkPnt.x - extents.x; rfSqrDistance += fDelta*fDelta; rkPnt.x = extents.x; } if(rkPnt.y < -extents.y) { fDelta = rkPnt.y + extents.y; rfSqrDistance += fDelta*fDelta; rkPnt.y = -extents.y; } else if(rkPnt.y > extents.y) { fDelta = rkPnt.y - extents.y; rfSqrDistance += fDelta*fDelta; rkPnt.y = extents.y; } if(rkPnt.z < -extents.z) { fDelta = rkPnt.z + extents.z; rfSqrDistance += fDelta*fDelta; rkPnt.z = -extents.z; } else if(rkPnt.z > extents.z) { fDelta = rkPnt.z - extents.z; rfSqrDistance += fDelta*fDelta; rkPnt.z = extents.z; } } static float SqrDistance(const Ray& rkLine, const IcePoint& center, const IcePoint& extents, float* pfLParam) { // compute coordinates of line in box coordinate system IcePoint kDiff = rkLine.mOrig - center; IcePoint kPnt = kDiff; IcePoint kDir = rkLine.mDir; // Apply reflections so that direction vector has nonnegative components. bool bReflect[3]; for(int i=0;i<3;i++) { if(kDir[i]<0.0f) { kPnt[i] = -kPnt[i]; kDir[i] = -kDir[i]; bReflect[i] = true; } else { bReflect[i] = false; } } float fSqrDistance = 0.0f; if(kDir.x>0.0f) { if(kDir.y>0.0f) { if(kDir.z>0.0f) CaseNoZeros(kPnt, kDir, extents, pfLParam, fSqrDistance); // (+,+,+) else Case0(0, 1, 2, kPnt, kDir, extents, pfLParam, fSqrDistance); // (+,+,0) } else { if(kDir.z>0.0f) Case0(0, 2, 1, kPnt, kDir, extents, pfLParam, fSqrDistance); // (+,0,+) else Case00(0, 1, 2, kPnt, kDir, extents, pfLParam, fSqrDistance); // (+,0,0) } } else { if(kDir.y>0.0f) { if(kDir.z>0.0f) Case0(1, 2, 0, kPnt, kDir, extents, pfLParam, fSqrDistance); // (0,+,+) else Case00(1, 0, 2, kPnt, kDir, extents, pfLParam, fSqrDistance); // (0,+,0) } else { if(kDir.z>0.0f) Case00(2, 0, 1, kPnt, kDir, extents, pfLParam, fSqrDistance); // (0,0,+) else { Case000(kPnt, extents, fSqrDistance); // (0,0,0) if(pfLParam) *pfLParam = 0.0f; } } } return fSqrDistance; } inline_ float OPC_SegmentOBBSqrDist(const Segment& segment, const IcePoint& c0, const IcePoint& e0) { float fLP; float fSqrDistance = SqrDistance(Ray(segment.GetOrigin(), segment.ComputeDirection()), c0, e0, &fLP); if(fLP>=0.0f) { if(fLP<=1.0f) return fSqrDistance; else return OPC_PointAABBSqrDist(segment.mP1, c0, e0); } else return OPC_PointAABBSqrDist(segment.mP0, c0, e0); } inline_ BOOL LSSCollider::LSSAABBOverlap(const IcePoint& center, const IcePoint& extents) { // Stats mNbVolumeBVTests++; float s2 = OPC_SegmentOBBSqrDist(mSeg, center, extents); if(s2