From 373dc625f82b47096893add42c4472e4a57ab7eb Mon Sep 17 00:00:00 2001 From: Aki Date: Wed, 9 Feb 2022 22:23:03 +0100 Subject: Moved third-party libraries to a separate subdirectory --- vorbis/doc/Vorbis_I_spec.html | 13243 ---------------------------------------- 1 file changed, 13243 deletions(-) delete mode 100644 vorbis/doc/Vorbis_I_spec.html (limited to 'vorbis/doc/Vorbis_I_spec.html') diff --git a/vorbis/doc/Vorbis_I_spec.html b/vorbis/doc/Vorbis_I_spec.html deleted file mode 100644 index 629b2fb..0000000 --- a/vorbis/doc/Vorbis_I_spec.html +++ /dev/null @@ -1,13243 +0,0 @@ - - -Vorbis I specification - - - - - - - - -
- - - - - - - -

Vorbis I specification

-
Xiph.Org Foundation

-
February 27, 2015
-
-

Contents

-
1 Introduction and Description -
  1.1 Overview -
   1.1.1 Application -
   1.1.2 Classification -
   1.1.3 Assumptions -
   1.1.4 Codec Setup and Probability Model -
   1.1.5 Format Specification -
   1.1.6 Hardware Profile -
  1.2 Decoder Configuration -
   1.2.1 Global Config -
   1.2.2 Mode -
   1.2.3 Mapping - - - -
   1.2.4 Floor -
   1.2.5 Residue -
   1.2.6 Codebooks -
  1.3 High-level Decode Process -
   1.3.1 Decode Setup -
   1.3.2 Decode Procedure -
 2 Bitpacking Convention -
  2.1 Overview -
   2.1.1 octets, bytes and words -
   2.1.2 bit order -
   2.1.3 byte order -
   2.1.4 coding bits into byte sequences -
   2.1.5 signedness -
   2.1.6 coding example -
   2.1.7 decoding example -
   2.1.8 end-of-packet alignment -
   2.1.9 reading zero bits -
 3 Probability Model and Codebooks -
  3.1 Overview -
   3.1.1 Bitwise operation -
  3.2 Packed codebook format -
   3.2.1 codebook decode -
  3.3 Use of the codebook abstraction -
 4 Codec Setup and Packet Decode -
  4.1 Overview -
  4.2 Header decode and decode setup -
   4.2.1 Common header decode -
   4.2.2 Identification header -
   4.2.3 Comment header - - - -
   4.2.4 Setup header -
  4.3 Audio packet decode and synthesis -
   4.3.1 packet type, mode and window decode -
   4.3.2 floor curve decode -
   4.3.3 nonzero vector propagate -
   4.3.4 residue decode -
   4.3.5 inverse coupling -
   4.3.6 dot product -
   4.3.7 inverse MDCT -
   4.3.8 overlap_add -
   4.3.9 output channel order -
 5 comment field and header specification -
  5.1 Overview -
  5.2 Comment encoding -
   5.2.1 Structure -
   5.2.2 Content vector format -
   5.2.3 Encoding -
 6 Floor type 0 setup and decode -
  6.1 Overview -
  6.2 Floor 0 format -
   6.2.1 header decode -
   6.2.2 packet decode -
   6.2.3 curve computation -
 7 Floor type 1 setup and decode -
  7.1 Overview -
  7.2 Floor 1 format -
   7.2.1 model -
   7.2.2 header decode -
   7.2.3 packet decode - - - -
   7.2.4 curve computation -
 8 Residue setup and decode -
  8.1 Overview -
  8.2 Residue format -
  8.3 residue 0 -
  8.4 residue 1 -
  8.5 residue 2 -
  8.6 Residue decode -
   8.6.1 header decode -
   8.6.2 packet decode -
   8.6.3 format 0 specifics -
   8.6.4 format 1 specifics -
   8.6.5 format 2 specifics -
 9 Helper equations -
  9.1 Overview -
  9.2 Functions -
   9.2.1 ilog -
   9.2.2 float32_unpack -
   9.2.3 lookup1_values -
   9.2.4 low_neighbor -
   9.2.5 high_neighbor -
   9.2.6 render_point -
   9.2.7 render_line -
 10 Tables -
  10.1 floor1_inverse_dB_table -
 A Embedding Vorbis into an Ogg stream -
  A.1 Overview -
   A.1.1 Restrictions -
   A.1.2 MIME type - - - -
  A.2 Encapsulation -
 B Vorbis encapsulation in RTP -
- - - -

1. Introduction and Description

-

-

1.1. Overview

-

This document provides a high level description of the Vorbis codec’s construction. A bit-by-bit -specification appears beginning in section 4, “Codec Setup and Packet Decode”. The later -sections assume a high-level understanding of the Vorbis decode process, which is provided -here. -

-

1.1.1. Application
-

Vorbis is a general purpose perceptual audio CODEC intended to allow maximum encoder -flexibility, thus allowing it to scale competitively over an exceptionally wide range of bitrates. At -the high quality/bitrate end of the scale (CD or DAT rate stereo, 16/24 bits) it is in the same -league as MPEG-2 and MPC. Similarly, the 1.0 encoder can encode high-quality CD and DAT -rate stereo at below 48kbps without resampling to a lower rate. Vorbis is also intended for lower -and higher sample rates (from 8kHz telephony to 192kHz digital masters) and a range of channel -representations (monaural, polyphonic, stereo, quadraphonic, 5.1, ambisonic, or up to 255 -discrete channels). -

-

1.1.2. Classification
-

Vorbis I is a forward-adaptive monolithic transform CODEC based on the Modified Discrete -Cosine Transform. The codec is structured to allow addition of a hybrid wavelet filterbank in -Vorbis II to offer better transient response and reproduction using a transform better suited to -localized time events. - - - -

-

1.1.3. Assumptions
-

The Vorbis CODEC design assumes a complex, psychoacoustically-aware encoder and simple, -low-complexity decoder. Vorbis decode is computationally simpler than mp3, although it does -require more working memory as Vorbis has no static probability model; the vector codebooks -used in the first stage of decoding from the bitstream are packed in their entirety into the Vorbis -bitstream headers. In packed form, these codebooks occupy only a few kilobytes; the extent to -which they are pre-decoded into a cache is the dominant factor in decoder memory -usage. -

Vorbis provides none of its own framing, synchronization or protection against errors; it -is solely a method of accepting input audio, dividing it into individual frames and -compressing these frames into raw, unformatted ’packets’. The decoder then accepts -these raw packets in sequence, decodes them, synthesizes audio frames from them, and -reassembles the frames into a facsimile of the original audio stream. Vorbis is a free-form -variable bit rate (VBR) codec and packets have no minimum size, maximum size, or -fixed/expected size. Packets are designed that they may be truncated (or padded) -and remain decodable; this is not to be considered an error condition and is used -extensively in bitrate management in peeling. Both the transport mechanism and -decoder must allow that a packet may be any size, or end before or after packet decode -expects. -

Vorbis packets are thus intended to be used with a transport mechanism that provides free-form -framing, sync, positioning and error correction in accordance with these design assumptions, such -as Ogg (for file transport) or RTP (for network multicast). For purposes of a few examples in this -document, we will assume that Vorbis is to be embedded in an Ogg stream specifically, -although this is by no means a requirement or fundamental assumption in the Vorbis -design. -

The specification for embedding Vorbis into an Ogg transport stream is in section A, -“Embedding Vorbis into an Ogg stream”. -

-

1.1.4. Codec Setup and Probability Model
-

Vorbis’ heritage is as a research CODEC and its current design reflects a desire to allow multiple -decades of continuous encoder improvement before running out of room within the codec -specification. For these reasons, configurable aspects of codec setup intentionally lean toward the -extreme of forward adaptive. - - - -

The single most controversial design decision in Vorbis (and the most unusual for a Vorbis -developer to keep in mind) is that the entire probability model of the codec, the Huffman and -VQ codebooks, is packed into the bitstream header along with extensive CODEC setup -parameters (often several hundred fields). This makes it impossible, as it would be with -MPEG audio layers, to embed a simple frame type flag in each audio packet, or begin -decode at any frame in the stream without having previously fetched the codec setup -header. -

Note: Vorbis can initiate decode at any arbitrary packet within a bitstream so long as the codec -has been initialized/setup with the setup headers. -

Thus, Vorbis headers are both required for decode to begin and relatively large as bitstream -headers go. The header size is unbounded, although for streaming a rule-of-thumb of 4kB or less -is recommended (and Xiph.Org’s Vorbis encoder follows this suggestion). -

Our own design work indicates the primary liability of the required header is in mindshare; it is -an unusual design and thus causes some amount of complaint among engineers as this runs -against current design trends (and also points out limitations in some existing software/interface -designs, such as Windows’ ACM codec framework). However, we find that it does not -fundamentally limit Vorbis’ suitable application space. -

-

1.1.5. Format Specification
-

The Vorbis format is well-defined by its decode specification; any encoder that produces packets -that are correctly decoded by the reference Vorbis decoder described below may be considered -a proper Vorbis encoder. A decoder must faithfully and completely implement the -specification defined below (except where noted) to be considered a proper Vorbis -decoder. -

-

1.1.6. Hardware Profile
- - - -

Although Vorbis decode is computationally simple, it may still run into specific limitations of an -embedded design. For this reason, embedded designs are allowed to deviate in limited ways from -the ‘full’ decode specification yet still be certified compliant. These optional omissions are -labelled in the spec where relevant. -

-

1.2. Decoder Configuration

-

Decoder setup consists of configuration of multiple, self-contained component abstractions that -perform specific functions in the decode pipeline. Each different component instance of a specific -type is semantically interchangeable; decoder configuration consists both of internal component -configuration, as well as arrangement of specific instances into a decode pipeline. Componentry -arrangement is roughly as follows: -

-

- -

PIC -

Figure 1: decoder pipeline configuration
-
-

-

1.2.1. Global Config
-

Global codec configuration consists of a few audio related fields (sample rate, channels), Vorbis -version (always ’0’ in Vorbis I), bitrate hints, and the lists of component instances. All other -configuration is in the context of specific components. -

-

1.2.2. Mode
- - - -

Each Vorbis frame is coded according to a master ’mode’. A bitstream may use one or many -modes. -

The mode mechanism is used to encode a frame according to one of multiple possible -methods with the intention of choosing a method best suited to that frame. Different -modes are, e.g. how frame size is changed from frame to frame. The mode number of a -frame serves as a top level configuration switch for all other specific aspects of frame -decode. -

A ’mode’ configuration consists of a frame size setting, window type (always 0, the Vorbis -window, in Vorbis I), transform type (always type 0, the MDCT, in Vorbis I) and a mapping -number. The mapping number specifies which mapping configuration instance to use for low-level -packet decode and synthesis. -

-

1.2.3. Mapping
-

A mapping contains a channel coupling description and a list of ’submaps’ that bundle sets -of channel vectors together for grouped encoding and decoding. These submaps are -not references to external components; the submap list is internal and specific to a -mapping. -

A ’submap’ is a configuration/grouping that applies to a subset of floor and residue vectors -within a mapping. The submap functions as a last layer of indirection such that specific special -floor or residue settings can be applied not only to all the vectors in a given mode, but also -specific vectors in a specific mode. Each submap specifies the proper floor and residue -instance number to use for decoding that submap’s spectral floor and spectral residue -vectors. -

As an example: -

Assume a Vorbis stream that contains six channels in the standard 5.1 format. The sixth -channel, as is normal in 5.1, is bass only. Therefore it would be wasteful to encode a -full-spectrum version of it as with the other channels. The submapping mechanism can be used -to apply a full range floor and residue encoding to channels 0 through 4, and a bass-only -representation to the bass channel, thus saving space. In this example, channels 0-4 belong to -submap 0 (which indicates use of a full-range floor) and channel 5 belongs to submap 1, which -uses a bass-only representation. - - - -

-

1.2.4. Floor
-

Vorbis encodes a spectral ’floor’ vector for each PCM channel. This vector is a low-resolution -representation of the audio spectrum for the given channel in the current frame, generally used -akin to a whitening filter. It is named a ’floor’ because the Xiph.Org reference encoder has -historically used it as a unit-baseline for spectral resolution. -

A floor encoding may be of two types. Floor 0 uses a packed LSP representation on a dB -amplitude scale and Bark frequency scale. Floor 1 represents the curve as a piecewise linear -interpolated representation on a dB amplitude scale and linear frequency scale. The two floors -are semantically interchangeable in encoding/decoding. However, floor type 1 provides more -stable inter-frame behavior, and so is the preferred choice in all coupled-stereo and -high bitrate modes. Floor 1 is also considerably less expensive to decode than floor -0. -

Floor 0 is not to be considered deprecated, but it is of limited modern use. No known Vorbis -encoder past Xiph.Org’s own beta 4 makes use of floor 0. -

The values coded/decoded by a floor are both compactly formatted and make use of entropy -coding to save space. For this reason, a floor configuration generally refers to multiple -codebooks in the codebook component list. Entropy coding is thus provided as an -abstraction, and each floor instance may choose from any and all available codebooks when -coding/decoding. -

-

1.2.5. Residue
-

The spectral residue is the fine structure of the audio spectrum once the floor curve has been -subtracted out. In simplest terms, it is coded in the bitstream using cascaded (multi-pass) vector -quantization according to one of three specific packing/coding algorithms numbered -0 through 2. The packing algorithm details are configured by residue instance. As -with the floor components, the final VQ/entropy encoding is provided by external -codebook instances and each residue instance may choose from any and all available -codebooks. -

- - - -

1.2.6. Codebooks
-

Codebooks are a self-contained abstraction that perform entropy decoding and, optionally, use -the entropy-decoded integer value as an offset into an index of output value vectors, returning -the indicated vector of values. -

The entropy coding in a Vorbis I codebook is provided by a standard Huffman binary tree -representation. This tree is tightly packed using one of several methods, depending on whether -codeword lengths are ordered or unordered, or the tree is sparse. -

The codebook vector index is similarly packed according to index characteristic. Most commonly, -the vector index is encoded as a single list of values of possible values that are then permuted -into a list of n-dimensional rows (lattice VQ). -

-

1.3. High-level Decode Process

-

-

1.3.1. Decode Setup
-

Before decoding can begin, a decoder must initialize using the bitstream headers matching the -stream to be decoded. Vorbis uses three header packets; all are required, in-order, by -this specification. Once set up, decode may begin at any audio packet belonging to -the Vorbis stream. In Vorbis I, all packets after the three initial headers are audio -packets. -

The header packets are, in order, the identification header, the comments header, and the setup -header. -

Identification Header -The identification header identifies the bitstream as Vorbis, Vorbis version, and the simple audio -characteristics of the stream such as sample rate and number of channels. - - - -

Comment Header -The comment header includes user text comments (“tags”) and a vendor string for the -application/library that produced the bitstream. The encoding and proper use of the comment -header is described in section 5, “comment field and header specification”. -

Setup Header -The setup header includes extensive CODEC setup information as well as the complete VQ and -Huffman codebooks needed for decode. -

-

1.3.2. Decode Procedure
-

The decoding and synthesis procedure for all audio packets is fundamentally the same. -

- 1.
decode packet type flag -
- 2.
decode mode number -
- 3.
decode window shape (long windows only) -
- 4.
decode floor -
- 5.
decode residue into residue vectors -
- 6.
inverse channel coupling of residue vectors -
- 7.
generate floor curve from decoded floor data -
- 8.
compute dot product of floor and residue, producing audio spectrum vector -
- 9.
inverse monolithic transform of audio spectrum vector, always an MDCT in Vorbis - I - - - -
- 10.
overlap/add left-hand output of transform with right-hand output of previous frame -
- 11.
store right hand-data from transform of current frame for future lapping -
- 12.
if not first frame, return results of overlap/add as audio result of current frame
-

Note that clever rearrangement of the synthesis arithmetic is possible; as an example, one can -take advantage of symmetries in the MDCT to store the right-hand transform data of a partial -MDCT for a 50% inter-frame buffer space savings, and then complete the transform later before -overlap/add with the next frame. This optimization produces entirely equivalent output and is -naturally perfectly legal. The decoder must be entirely mathematically equivalent to the -specification, it need not be a literal semantic implementation. -

Packet type decode -Vorbis I uses four packet types. The first three packet types mark each of the three Vorbis -headers described above. The fourth packet type marks an audio packet. All other packet types -are reserved; packets marked with a reserved type should be ignored. -

Following the three header packets, all packets in a Vorbis I stream are audio. The first step of -audio packet decode is to read and verify the packet type; a non-audio packet when audio is -expected indicates stream corruption or a non-compliant stream. The decoder must ignore the -packet and not attempt decoding it to audio. -

Mode decode -Vorbis allows an encoder to set up multiple, numbered packet ’modes’, as described earlier, all of -which may be used in a given Vorbis stream. The mode is encoded as an integer used as a direct -offset into the mode instance index. -

Window shape decode (long windows only) -Vorbis frames may be one of two PCM sample sizes specified during codec setup. In Vorbis I, -legal frame sizes are powers of two from 64 to 8192 samples. Aside from coupling, Vorbis -handles channels as independent vectors and these frame sizes are in samples per -channel. - - - -

Vorbis uses an overlapping transform, namely the MDCT, to blend one frame into the next, -avoiding most inter-frame block boundary artifacts. The MDCT output of one frame is windowed -according to MDCT requirements, overlapped 50% with the output of the previous frame and -added. The window shape assures seamless reconstruction. -

This is easy to visualize in the case of equal sized-windows: -

-

- -

PIC -

Figure 2: overlap of two equal-sized windows
-
-

And slightly more complex in the case of overlapping unequal sized windows: -

-

- -

PIC -

Figure 3: overlap of a long and a short window
-
-

In the unequal-sized window case, the window shape of the long window must be modified for -seamless lapping as above. It is possible to correctly infer window shape to be applied to the -current window from knowing the sizes of the current, previous and next window. It is legal for a -decoder to use this method. However, in the case of a long window (short windows require no -modification), Vorbis also codes two flag bits to specify pre- and post- window shape. Although -not strictly necessary for function, this minor redundancy allows a packet to be fully decoded to -the point of lapping entirely independently of any other packet, allowing easier abstraction of -decode layers as well as allowing a greater level of easy parallelism in encode and -decode. -

A description of valid window functions for use with an inverse MDCT can be found in [1]. -Vorbis windows all use the slope function -

-y = sin (.5 * π sin2((x + .5)∕n * π)).
-                                                                                        
-
-                                                                                        
-
-

-

floor decode -Each floor is encoded/decoded in channel order, however each floor belongs to a ’submap’ that -specifies which floor configuration to use. All floors are decoded before residue decode -begins. -

residue decode -Although the number of residue vectors equals the number of channels, channel coupling may -mean that the raw residue vectors extracted during decode do not map directly to specific -channels. When channel coupling is in use, some vectors will correspond to coupled magnitude or -angle. The coupling relationships are described in the codec setup and may differ from frame to -frame, due to different mode numbers. -

Vorbis codes residue vectors in groups by submap; the coding is done in submap order from -submap 0 through n-1. This differs from floors which are coded using a configuration provided by -submap number, but are coded individually in channel order. -

inverse channel coupling -A detailed discussion of stereo in the Vorbis codec can be found in the document -Stereo Channel Coupling in the Vorbis CODEC. Vorbis is not limited to only stereo -coupling, but the stereo document also gives a good overview of the generic coupling -mechanism. -

Vorbis coupling applies to pairs of residue vectors at a time; decoupling is done in-place a -pair at a time in the order and using the vectors specified in the current mapping -configuration. The decoupling operation is the same for all pairs, converting square polar -representation (where one vector is magnitude and the second angle) back to Cartesian -representation. -

After decoupling, in order, each pair of vectors on the coupling list, the resulting residue vectors -represent the fine spectral detail of each output channel. - - - -

generate floor curve -The decoder may choose to generate the floor curve at any appropriate time. It is reasonable to -generate the output curve when the floor data is decoded from the raw packet, or it -can be generated after inverse coupling and applied to the spectral residue directly, -combining generation and the dot product into one step and eliminating some working -space. -

Both floor 0 and floor 1 generate a linear-range, linear-domain output vector to be multiplied -(dot product) by the linear-range, linear-domain spectral residue. -

compute floor/residue dot product -This step is straightforward; for each output channel, the decoder multiplies the floor curve and -residue vectors element by element, producing the finished audio spectrum of each -channel. -

One point is worth mentioning about this dot product; a common mistake in a fixed point -implementation might be to assume that a 32 bit fixed-point representation for floor and -residue and direct multiplication of the vectors is sufficient for acceptable spectral depth -in all cases because it happens to mostly work with the current Xiph.Org reference -encoder. -

However, floor vector values can span ~140dB (~24 bits unsigned), and the audio spectrum -vector should represent a minimum of 120dB (~21 bits with sign), even when output is to a 16 -bit PCM device. For the residue vector to represent full scale if the floor is nailed -to -140dB, it must be able to span 0 to +140dB. For the residue vector to reach -full scale if the floor is nailed at 0dB, it must be able to represent -140dB to +0dB. -Thus, in order to handle full range dynamics, a residue vector may span -140dB to -+140dB entirely within spec. A 280dB range is approximately 48 bits with sign; thus the -residue vector must be able to represent a 48 bit range and the dot product must -be able to handle an effective 48 bit times 24 bit multiplication. This range may be -achieved using large (64 bit or larger) integers, or implementing a movable binary point -representation. -

inverse monolithic transform (MDCT) -The audio spectrum is converted back into time domain PCM audio via an inverse Modified -Discrete Cosine Transform (MDCT). A detailed description of the MDCT is available in -[1]. -

Note that the PCM produced directly from the MDCT is not yet finished audio; it must be - - - -lapped with surrounding frames using an appropriate window (such as the Vorbis window) before -the MDCT can be considered orthogonal. -

overlap/add data -Windowed MDCT output is overlapped and added with the right hand data of the previous -window such that the 3/4 point of the previous window is aligned with the 1/4 point of the -current window (as illustrated in the window overlap diagram). At this point, the audio data -between the center of the previous frame and the center of the current frame is now finished and -ready to be returned. -

cache right hand data -The decoder must cache the right hand portion of the current frame to be lapped with the left -hand portion of the next frame. -

return finished audio data -The overlapped portion produced from overlapping the previous and current frame data -is finished data to be returned by the decoder. This data spans from the center of -the previous window to the center of the current window. In the case of same-sized -windows, the amount of data to return is one-half block consisting of and only of the -overlapped portions. When overlapping a short and long window, much of the returned -range is not actually overlap. This does not damage transform orthogonality. Pay -attention however to returning the correct data range; the amount of data to be returned -is: -

-

1  window_blocksize(previous_window)/4+window_blocksize(current_window)/4
-

from the center of the previous window to the center of the current window. -

Data is not returned from the first frame; it must be used to ’prime’ the decode engine. The -encoder accounts for this priming when calculating PCM offsets; after the first frame, the proper -PCM output offset is ’0’ (as no data has been returned yet). - - - - - - -

2. Bitpacking Convention

-

-

2.1. Overview

-

The Vorbis codec uses relatively unstructured raw packets containing arbitrary-width binary -integer fields. Logically, these packets are a bitstream in which bits are coded one-by-one by the -encoder and then read one-by-one in the same monotonically increasing order by the decoder. -Most current binary storage arrangements group bits into a native word size of eight bits -(octets), sixteen bits, thirty-two bits or, less commonly other fixed word sizes. The Vorbis -bitpacking convention specifies the correct mapping of the logical packet bitstream into an actual -representation in fixed-width words. -

-

2.1.1. octets, bytes and words
-

In most contemporary architectures, a ’byte’ is synonymous with an ’octet’, that is, eight bits. -This has not always been the case; seven, ten, eleven and sixteen bit ’bytes’ have been used. -For purposes of the bitpacking convention, a byte implies the native, smallest integer -storage representation offered by a platform. On modern platforms, this is generally -assumed to be eight bits (not necessarily because of the processor but because of the -filesystem/memory architecture. Modern filesystems invariably offer bytes as the fundamental -atom of storage). A ’word’ is an integer size that is a grouped multiple of this smallest -size. -

The most ubiquitous architectures today consider a ’byte’ to be an octet (eight bits) and a word -to be a group of two, four or eight bytes (16, 32 or 64 bits). Note however that the Vorbis -bitpacking convention is still well defined for any native byte size; Vorbis uses the native -bit-width of a given storage system. This document assumes that a byte is one octet for purposes -of example. -

- - - -

2.1.2. bit order
-

A byte has a well-defined ’least significant’ bit (LSb), which is the only bit set when the byte is -storing the two’s complement integer value +1. A byte’s ’most significant’ bit (MSb) is at the -opposite end of the byte. Bits in a byte are numbered from zero at the LSb to n (n = 7 in an -octet) for the MSb. -

-

2.1.3. byte order
-

Words are native groupings of multiple bytes. Several byte orderings are possible in a word; the -common ones are 3-2-1-0 (’big endian’ or ’most significant byte first’ in which the -highest-valued byte comes first), 0-1-2-3 (’little endian’ or ’least significant byte first’ in -which the lowest value byte comes first) and less commonly 3-1-2-0 and 0-2-1-3 (’mixed -endian’). -

The Vorbis bitpacking convention specifies storage and bitstream manipulation at the byte, not -word, level, thus host word ordering is of a concern only during optimization when writing high -performance code that operates on a word of storage at a time rather than by byte. -Logically, bytes are always coded and decoded in order from byte zero through byte -n. -

-

2.1.4. coding bits into byte sequences
-

The Vorbis codec has need to code arbitrary bit-width integers, from zero to 32 bits -wide, into packets. These integer fields are not aligned to the boundaries of the byte -representation; the next field is written at the bit position at which the previous field -ends. -

The encoder logically packs integers by writing the LSb of a binary integer to the logical -bitstream first, followed by next least significant bit, etc, until the requested number of bits -have been coded. When packing the bits into bytes, the encoder begins by placing -the LSb of the integer to be written into the least significant unused bit position of -the destination byte, followed by the next-least significant bit of the source integer -and so on up to the requested number of bits. When all bits of the destination byte -have been filled, encoding continues by zeroing all bits of the next byte and writing -the next bit into the bit position 0 of that byte. Decoding follows the same process - - - -as encoding, but by reading bits from the byte stream and reassembling them into -integers. -

-

2.1.5. signedness
-

The signedness of a specific number resulting from decode is to be interpreted by the decoder -given decode context. That is, the three bit binary pattern ’b111’ can be taken to represent -either ’seven’ as an unsigned integer, or ’-1’ as a signed, two’s complement integer. The -encoder and decoder are responsible for knowing if fields are to be treated as signed or -unsigned. -

-

2.1.6. coding example
-

Code the 4 bit integer value ’12’ [b1100] into an empty bytestream. Bytestream result: -

-

1                |
2                V
3  
4          7 6 5 4 3 2 1 0
5  byte 0 [0 0 0 0 1 1 0 0]  <-
6  byte 1 [               ] -
7  byte 2 [               ]
8  byte 3 [               ]
9               ...
10  byte n [               ]  bytestream length == 1 byte
11  
-

Continue by coding the 3 bit integer value ’-1’ [b111]: -

-

1          |
2          V
3  
4          7 6 5 4 3 2 1 0
5  byte 0 [0 1 1 1 1 1 0 0]  <-
6  byte 1 [               ] -
7  byte 2 [               ]
8  byte 3 [               ]
9               ...
10  byte n [               ]  bytestream length == 1 byte
-

Continue by coding the 7 bit integer value ’17’ [b0010001]: -

-

1            |
2            V
3  
4          7 6 5 4 3 2 1 0
5  byte 0 [1 1 1 1 1 1 0 0]
6  byte 1 [0 0 0 0 1 0 0 0]  <-
7  byte 2 [               ] -
8  byte 3 [               ]
9               ...
10  byte n [               ]  bytestream length == 2 bytes
11                            bit cursor == 6
-

Continue by coding the 13 bit integer value ’6969’ [b110 11001110 01]: -

-

1                  |
2                  V
3  
4          7 6 5 4 3 2 1 0
5  byte 0 [1 1 1 1 1 1 0 0]
6  byte 1 [0 1 0 0 1 0 0 0] -
7  byte 2 [1 1 0 0 1 1 1 0]
8  byte 3 [0 0 0 0 0 1 1 0]  <-
9               ...
10  byte n [               ]  bytestream length == 4 bytes
11  
- - - -

-

2.1.7. decoding example
-

Reading from the beginning of the bytestream encoded in the above example: -

-

1                        |
2                        V
3  
4          7 6 5 4 3 2 1 0
5  byte 0 [1 1 1 1 1 1 0 0]  <- -
6  byte 1 [0 1 0 0 1 0 0 0]
7  byte 2 [1 1 0 0 1 1 1 0]
8  byte 3 [0 0 0 0 0 1 1 0]  bytestream length == 4 bytes
9  
-

We read two, two-bit integer fields, resulting in the returned numbers ’b00’ and ’b11’. Two things -are worth noting here: -

-

-

2.1.8. end-of-packet alignment
-

The typical use of bitpacking is to produce many independent byte-aligned packets which are -embedded into a larger byte-aligned container structure, such as an Ogg transport bitstream. -Externally, each bytestream (encoded bitstream) must begin and end on a byte boundary. Often, -the encoded bitstream is not an integer number of bytes, and so there is unused (uncoded) space -in the last byte of a packet. -

Unused space in the last byte of a bytestream is always zeroed during the coding process. Thus, -should this unused space be read, it will return binary zeroes. -

Attempting to read past the end of an encoded packet results in an ’end-of-packet’ condition. -End-of-packet is not to be considered an error; it is merely a state indicating that there is -insufficient remaining data to fulfill the desired read size. Vorbis uses truncated packets as a - - - -normal mode of operation, and as such, decoders must handle reading past the end of a packet as -a typical mode of operation. Any further read operations after an ’end-of-packet’ condition shall -also return ’end-of-packet’. -

-

2.1.9. reading zero bits
-

Reading a zero-bit-wide integer returns the value ’0’ and does not increment the stream cursor. -Reading to the end of the packet (but not past, such that an ’end-of-packet’ condition has not -triggered) and then reading a zero bit integer shall succeed, returning 0, and not trigger an -end-of-packet condition. Reading a zero-bit-wide integer after a previous read sets ’end-of-packet’ -shall also fail with ’end-of-packet’. - - - - - - -

3. Probability Model and Codebooks

-

-

3.1. Overview

-

Unlike practically every other mainstream audio codec, Vorbis has no statically configured -probability model, instead packing all entropy decoding configuration, VQ and Huffman, into the -bitstream itself in the third header, the codec setup header. This packed configuration consists of -multiple ’codebooks’, each containing a specific Huffman-equivalent representation for decoding -compressed codewords as well as an optional lookup table of output vector values to which a -decoded Huffman value is applied as an offset, generating the final decoded output corresponding -to a given compressed codeword. -

-

3.1.1. Bitwise operation
-

The codebook mechanism is built on top of the vorbis bitpacker. Both the codebooks themselves -and the codewords they decode are unrolled from a packet as a series of arbitrary-width values -read from the stream according to section 2, “Bitpacking Convention”. -

-

3.2. Packed codebook format

-

For purposes of the examples below, we assume that the storage system’s native byte width is -eight bits. This is not universally true; see section 2, “Bitpacking Convention” for discussion -relating to non-eight-bit bytes. - - - -

-

3.2.1. codebook decode
-

A codebook begins with a 24 bit sync pattern, 0x564342: -

-

1  byte 0: [ 0 1 0 0 0 0 1 0 ] (0x42)
2  byte 1: [ 0 1 0 0 0 0 1 1 ] (0x43)
3  byte 2: [ 0 1 0 1 0 1 1 0 ] (0x56)
-

16 bit [codebook_dimensions] and 24 bit [codebook_entries] fields: -

-

1  
2  byte 3: [ X X X X X X X X ]
3  byte 4: [ X X X X X X X X ] [codebook_dimensions] (16 bit unsigned)
4   -
5  byte 5: [ X X X X X X X X ]
6  byte 6: [ X X X X X X X X ]
7  byte 7: [ X X X X X X X X ] [codebook_entries] (24 bit unsigned)
8  
-

Next is the [ordered] bit flag: -

-

1  
2  byte 8: [               X ] [ordered] (1 bit)
3  
-

Each entry, numbering a total of [codebook_entries], is assigned a codeword length. -We now read the list of codeword lengths and store these lengths in the array -[codebook_codeword_lengths]. Decode of lengths is according to whether the [ordered] flag -is set or unset. -

-

After all codeword lengths have been decoded, the decoder reads the vector lookup table. Vorbis -I supports three lookup types: -

- 1.
No lookup -
- 2.
Implicitly populated value mapping (lattice VQ) -
- 3.
Explicitly populated value mapping (tessellated or ’foam’ VQ)
-

The lookup table type is read as a four bit unsigned integer: -

1    1) [codebook_lookup_type] = read four bits as an unsigned integer
-

Codebook decode precedes according to [codebook_lookup_type]: -

-

An ’end of packet’ during any read operation in the above steps is considered an error condition -rendering the stream undecodable. -

Huffman decision tree representation -The [codebook_codeword_lengths] array and [codebook_entries] value uniquely define the -Huffman decision tree used for entropy decoding. -

Briefly, each used codebook entry (recall that length-unordered codebooks support unused -codeword entries) is assigned, in order, the lowest valued unused binary Huffman codeword -possible. Assume the following codeword length list: -

-

1  entry 0: length 2
2  entry 1: length 4
3  entry 2: length 4
4  entry 3: length 4
5  entry 4: length 4
6  entry 5: length 2 -
7  entry 6: length 3
8  entry 7: length 3
-

Assigning codewords in order (lowest possible value of the appropriate length to highest) results -in the following codeword list: -

-

1  entry 0: length 2 codeword 00
2  entry 1: length 4 codeword 0100
3  entry 2: length 4 codeword 0101
4  entry 3: length 4 codeword 0110 -
5  entry 4: length 4 codeword 0111
6  entry 5: length 2 codeword 10
7  entry 6: length 3 codeword 110
8  entry 7: length 3 codeword 111
-

Note: Unlike most binary numerical values in this document, we intend the above codewords to -be read and used bit by bit from left to right, thus the codeword ’001’ is the bit string ’zero, zero, -one’. When determining ’lowest possible value’ in the assignment definition above, the leftmost -bit is the MSb. -

It is clear that the codeword length list represents a Huffman decision tree with the entry -numbers equivalent to the leaves numbered left-to-right: - - - -

-

- -

PIC -

Figure 4: huffman tree illustration
-
-

As we assign codewords in order, we see that each choice constructs a new leaf in the leftmost -possible position. -

Note that it’s possible to underspecify or overspecify a Huffman tree via the length list. -In the above example, if codeword seven were eliminated, it’s clear that the tree is -unfinished: -

-

- -

PIC -

Figure 5: underspecified huffman tree illustration
-
-

Similarly, in the original codebook, it’s clear that the tree is fully populated and a ninth -codeword is impossible. Both underspecified and overspecified trees are an error condition -rendering the stream undecodable. -

Codebook entries marked ’unused’ are simply skipped in the assigning process. They have no -codeword and do not appear in the decision tree, thus it’s impossible for any bit pattern read -from the stream to decode to that entry number. -

Errata 20150226: Single entry codebooks -A ’single-entry codebook’ is a codebook with one active codeword entry. A single-entry codebook -may be either a fully populated codebook with only one declared entry, or a sparse codebook -with only one entry marked used. The Vorbis I spec provides no means to specify a codeword -length of zero, and as a result, a single-entry codebook is inherently malformed because it is -underpopulated. The original specification did not address directly the matter of single-entry -codebooks; they were implicitly illegal as it was not possible to write such a codebook with a -valid tree structure. - - - -

In r14811 of the libvorbis reference implementation, Xiph added an additional check to the -codebook implementation to reject underpopulated Huffman trees. This change led to the -discovery of single-entry books used ’in the wild’ when the new, stricter checks rejected a number -of apparently working streams. -

In order to minimize breakage of deployed (if technically erroneous) streams, r16073 of the -reference implementation explicitly special-cased single-entry codebooks to tolerate the -single-entry case. Commit r16073 also added the following to the specification: -

Take special care that a codebook with a single used entry is handled properly; it consists of a -single codework of zero bits and reading a value out of such a codebook always returns the single -used value and sinks zero bits. ” -

The intent was to clarify the spec and codify current practice. However, this addition is -erroneously at odds with the intent of preserving usability of existing streams using single-entry -codebooks, disagrees with the code changes that reinstated decoding, and does not address how -single-entry codebooks should be encoded. -

As such, the above addition made in r16037 is struck from the specification and replaced by the -following: -

-

-

It is possible to declare a Vorbis codebook containing a single codework - entry. A single-entry codebook may be either a fully populated codebook with - [codebook_entries] set to 1, or a sparse codebook marking only one entry - used. Note that it is not possible to also encode a [codeword_length] of zero - for the single used codeword, as the unsigned value written to the stream - is [codeword_length]-1. Instead, encoder implementations should indicate a - [codeword_length] of 1 and ’write’ the codeword to a stream during audio - encoding by writing a single zero bit. -

Decoder implementations shall reject a codebook if it contains only one used - entry and the encoded [codeword_length] of that entry is not 1. ’Reading’ a - value from single-entry codebook always returns the single used codeword value - and sinks one bit. Decoders should tolerate that the bit read from the stream - be ’1’ instead of ’0’; both values shall return the single used codeword.

-

VQ lookup table vector representation -Unpacking the VQ lookup table vectors relies on the following values: - - - -

1  the [codebook\_multiplicands] array
2  [codebook\_minimum\_value]
3  [codebook\_delta\_value]
4  [codebook\_sequence\_p] -
5  [codebook\_lookup\_type]
6  [codebook\_entries]
7  [codebook\_dimensions]
8  [codebook\_lookup\_values]
-

Decoding (unpacking) a specific vector in the vector lookup table proceeds according to -[codebook_lookup_type]. The unpacked vector values are what a codebook would return -during audio packet decode in a VQ context. -

Vector value decode: Lookup type 1 -Lookup type one specifies a lattice VQ lookup table built algorithmically from a list of -scalar values. Calculate (unpack) the final values of a codebook entry vector from -the entries in [codebook_multiplicands] as follows ([value_vector] is the output -vector representing the vector of values for entry number [lookup_offset] in this -codebook): -

-

1    1) [last] = 0;
2    2) [index_divisor] = 1;
3    3) iterate [i] over the range 0 ... [codebook_dimensions]-1 (once for each scalar value in the value vector) { -
4  
5         4) [multiplicand_offset] = ( [lookup_offset] divided by [index_divisor] using integer -
6            division ) integer modulo [codebook_lookup_values]
7  
8         5) vector [value_vector] element [i] = -
9              ( [codebook_multiplicands] array element number [multiplicand_offset] ) * -
10              [codebook_delta_value] + [codebook_minimum_value] + [last];
11   -
12         6) if ( [codebook_sequence_p] is set ) then set [last] = vector [value_vector] element [i]
13   -
14         7) [index_divisor] = [index_divisor] * [codebook_lookup_values]
15  
16       }
17  
18    8) vector calculation completed.
-

Vector value decode: Lookup type 2 -Lookup type two specifies a VQ lookup table in which each scalar in each vector is explicitly set -by the [codebook_multiplicands] array in a one-to-one mapping. Calculate [unpack] the final -values of a codebook entry vector from the entries in [codebook_multiplicands] as follows -([value_vector] is the output vector representing the vector of values for entry number -[lookup_offset] in this codebook): -

-

1    1) [last] = 0;
2    2) [multiplicand_offset] = [lookup_offset] * [codebook_dimensions] -
3    3) iterate [i] over the range 0 ... [codebook_dimensions]-1 (once for each scalar value in the value vector) {
4   -
5         4) vector [value_vector] element [i] =
6              ( [codebook_multiplicands] array element number [multiplicand_offset] ) * -
7              [codebook_delta_value] + [codebook_minimum_value] + [last];
8   -
9         5) if ( [codebook_sequence_p] is set ) then set [last] = vector [value_vector] element [i]
10   -
11         6) increment [multiplicand_offset]
12  
13       }
14  
15    7) vector calculation completed.
- - - -

-

3.3. Use of the codebook abstraction

-

The decoder uses the codebook abstraction much as it does the bit-unpacking convention; a -specific codebook reads a codeword from the bitstream, decoding it into an entry number, and -then returns that entry number to the decoder (when used in a scalar entropy coding context), or -uses that entry number as an offset into the VQ lookup table, returning a vector of values (when -used in a context desiring a VQ value). Scalar or VQ context is always explicit; any -call to the codebook mechanism requests either a scalar entry number or a lookup -vector. -

Note that VQ lookup type zero indicates that there is no lookup table; requesting -decode using a codebook of lookup type 0 in any context expecting a vector return -value (even in a case where a vector of dimension one) is forbidden. If decoder setup -or decode requests such an action, that is an error condition rendering the packet -undecodable. -

Using a codebook to read from the packet bitstream consists first of reading and decoding the -next codeword in the bitstream. The decoder reads bits until the accumulated bits match a -codeword in the codebook. This process can be though of as logically walking the -Huffman decode tree by reading one bit at a time from the bitstream, and using the -bit as a decision boolean to take the 0 branch (left in the above examples) or the 1 -branch (right in the above examples). Walking the tree finishes when the decode process -hits a leaf in the decision tree; the result is the entry number corresponding to that -leaf. Reading past the end of a packet propagates the ’end-of-stream’ condition to the -decoder. -

When used in a scalar context, the resulting codeword entry is the desired return -value. -

When used in a VQ context, the codeword entry number is used as an offset into the VQ lookup -table. The value returned to the decoder is the vector of scalars corresponding to this -offset. - - - - - - -

4. Codec Setup and Packet Decode

-

-

4.1. Overview

-

This document serves as the top-level reference document for the bit-by-bit decode specification -of Vorbis I. This document assumes a high-level understanding of the Vorbis decode -process, which is provided in section 1, “Introduction and Description”. section 2, -“Bitpacking Convention” covers reading and writing bit fields from and to bitstream -packets. -

-

4.2. Header decode and decode setup

-

A Vorbis bitstream begins with three header packets. The header packets are, in order, the -identification header, the comments header, and the setup header. All are required for decode -compliance. An end-of-packet condition during decoding the first or third header packet renders -the stream undecodable. End-of-packet decoding the comment header is a non-fatal error -condition. -

-

4.2.1. Common header decode
-

Each header packet begins with the same header fields. -

-

1    1) [packet_type] : 8 bit value
2    2) 0x76, 0x6f, 0x72, 0x62, 0x69, 0x73: the characters ’v’,’o’,’r’,’b’,’i’,’s’ as six octets
-

Decode continues according to packet type; the identification header is type 1, the comment -header type 3 and the setup header type 5 (these types are all odd as a packet with a leading -single bit of ’0’ is an audio packet). The packets must occur in the order of identification, - - - -comment, setup. -

-

4.2.2. Identification header
-

The identification header is a short header of only a few fields used to declare the stream -definitively as Vorbis, and provide a few externally relevant pieces of information about the audio -stream. The identification header is coded as follows: -

-

1   1) [vorbis_version] = read 32 bits as unsigned integer
2   2) [audio_channels] = read 8 bit integer as unsigned -
3   3) [audio_sample_rate] = read 32 bits as unsigned integer
4   4) [bitrate_maximum] = read 32 bits as signed integer -
5   5) [bitrate_nominal] = read 32 bits as signed integer
6   6) [bitrate_minimum] = read 32 bits as signed integer -
7   7) [blocksize_0] = 2 exponent (read 4 bits as unsigned integer)
8   8) [blocksize_1] = 2 exponent (read 4 bits as unsigned integer) -
9   9) [framing_flag] = read one bit
-

[vorbis_version] is to read ’0’ in order to be compatible with this document. Both -[audio_channels] and [audio_sample_rate] must read greater than zero. Allowed final -blocksize values are 64, 128, 256, 512, 1024, 2048, 4096 and 8192 in Vorbis I. [blocksize_0] -must be less than or equal to [blocksize_1]. The framing bit must be nonzero. Failure to meet -any of these conditions renders a stream undecodable. -

The bitrate fields above are used only as hints. The nominal bitrate field especially may be -considerably off in purely VBR streams. The fields are meaningful only when greater than -zero. -

- - - -

-

4.2.3. Comment header
-

Comment header decode and data specification is covered in section 5, “comment field and -header specification”. -

-

4.2.4. Setup header
-

Vorbis codec setup is configurable to an extreme degree: -

-

- -

PIC -

Figure 6: decoder pipeline configuration
-
-

The setup header contains the bulk of the codec setup information needed for decode. The setup -header contains, in order, the lists of codebook configurations, time-domain transform -configurations (placeholders in Vorbis I), floor configurations, residue configurations, channel -mapping configurations and mode configurations. It finishes with a framing bit of ’1’. Header -decode proceeds in the following order: -

Codebooks -

- 1.
[vorbis_codebook_count] = read eight bits as unsigned integer and add one -
- 2.
Decode [vorbis_codebook_count] codebooks in order as defined in section 3, - “Probability Model and Codebooks”. Save each configuration, in order, in an array - of codebook configurations [vorbis_codebook_configurations].
- - - -

Time domain transforms -These hooks are placeholders in Vorbis I. Nevertheless, the configuration placeholder values must -be read to maintain bitstream sync. -

-

- 1.
[vorbis_time_count] = read 6 bits as unsigned integer and add one -
- 2.
read [vorbis_time_count] 16 bit values; each value should be zero. If any value is - nonzero, this is an error condition and the stream is undecodable.
-

Floors -Vorbis uses two floor types; header decode is handed to the decode abstraction of the appropriate -type. -

-

- 1.
[vorbis_floor_count] = read 6 bits as unsigned integer and add one -
- 2.
For each [i] of [vorbis_floor_count] floor numbers: -
- a)
read the floor type: vector [vorbis_floor_types] element [i] = read 16 bits - as unsigned integer -
- b)
If the floor type is zero, decode the floor configuration as defined in section 6, - “Floor type 0 setup and decode”; save this configuration in slot [i] of the floor - configuration array [vorbis_floor_configurations]. -
- c)
If the floor type is one, decode the floor configuration as defined in section 7, - “Floor type 1 setup and decode”; save this configuration in slot [i] of the floor - configuration array [vorbis_floor_configurations]. -
- d)
If the the floor type is greater than one, this stream is undecodable; ERROR - CONDITION
- - - -
-

Residues -Vorbis uses three residue types; header decode of each type is identical. -

-

- 1.
[vorbis_residue_count] = read 6 bits as unsigned integer and add one -
- 2.
For each of [vorbis_residue_count] residue numbers: -
- a)
read the residue type; vector [vorbis_residue_types] element [i] = read 16 - bits as unsigned integer -
- b)
If the residue type is zero, one or two, decode the residue configuration as defined - in section 8, “Residue setup and decode”; save this configuration in slot [i] of - the residue configuration array [vorbis_residue_configurations]. -
- c)
If the the residue type is greater than two, this stream is undecodable; ERROR - CONDITION
-
-

Mappings -Mappings are used to set up specific pipelines for encoding multichannel audio with varying -channel mapping applications. Vorbis I uses a single mapping type (0), with implicit PCM -channel mappings. -

-

- 1.
[vorbis_mapping_count] = read 6 bits as unsigned integer and add one -
- 2.
For each [i] of [vorbis_mapping_count] mapping numbers: - - - -
- a)
read the mapping type: 16 bits as unsigned integer. There’s no reason to save - the mapping type in Vorbis I. -
- b)
If the mapping type is nonzero, the stream is undecodable -
- c)
If the mapping type is zero: -
- i.
read 1 bit as a boolean flag -
- A.
if set, [vorbis_mapping_submaps] = read 4 bits as unsigned integer - and add one -
- B.
if unset, [vorbis_mapping_submaps] = 1
-
- ii.
read 1 bit as a boolean flag -
- A.
if set, square polar channel mapping is in use: -
    -
  • [vorbis_mapping_coupling_steps] = read 8 bits as unsigned - integer and add one -
  • -
  • for [j] each of [vorbis_mapping_coupling_steps] steps: -
      -
    • vector [vorbis_mapping_magnitude] element [j]= read - ilog([audio_channels] - 1) bits as unsigned integer -
    • -
    • vector [vorbis_mapping_angle] element [j]= read - ilog([audio_channels] - 1) bits as unsigned integer -
    • -
    • the numbers read in the above two steps are channel numbers - representing the channel to treat as magnitude and the channel - to treat as angle, respectively. If for any coupling step the - angle channel number equals the magnitude channel number, the - magnitude channel number is greater than [audio_channels]-1, or - the angle channel is greater than [audio_channels]-1, the stream - is undecodable.
    - - - -
-
- B.
if unset, [vorbis_mapping_coupling_steps] = 0
-
- iii.
read 2 bits (reserved field); if the value is nonzero, the stream is undecodable -
- iv.
if [vorbis_mapping_submaps] is greater than one, we read channel multiplex - settings. For each [j] of [audio_channels] channels: -
- A.
vector [vorbis_mapping_mux] element [j] = read 4 bits as unsigned - integer -
- B.
if the value is greater than the highest numbered submap - ([vorbis_mapping_submaps] - 1), this in an error condition rendering - the stream undecodable
-
- v.
for each submap [j] of [vorbis_mapping_submaps] submaps, read the floor and - residue numbers for use in decoding that submap: -
- A.
read and discard 8 bits (the unused time configuration placeholder) -
- B.
read 8 bits as unsigned integer for the floor number; save in vector - [vorbis_mapping_submap_floor] element [j] -
- C.
verify the floor number is not greater than the highest number floor - configured for the bitstream. If it is, the bitstream is undecodable -
- D.
read 8 bits as unsigned integer for the residue number; save in vector - [vorbis_mapping_submap_residue] element [j] -
- E.
verify the residue number is not greater than the highest number residue - configured for the bitstream. If it is, the bitstream is undecodable
-
- vi.
save this mapping configuration in slot [i] of the mapping configuration array - [vorbis_mapping_configurations].
-
- - - -
-

Modes -

- 1.
[vorbis_mode_count] = read 6 bits as unsigned integer and add one -
- 2.
For each of [vorbis_mode_count] mode numbers: -
- a)
[vorbis_mode_blockflag] = read 1 bit -
- b)
[vorbis_mode_windowtype] = read 16 bits as unsigned integer -
- c)
[vorbis_mode_transformtype] = read 16 bits as unsigned integer -
- d)
[vorbis_mode_mapping] = read 8 bits as unsigned integer -
- e)
verify ranges; zero is the only legal value in - Vorbis I for [vorbis_mode_windowtype] and [vorbis_mode_transformtype]. - [vorbis_mode_mapping] must not be greater than the highest number mapping - in use. Any illegal values render the stream undecodable. -
- f)
save this mode configuration in slot [i] of the mode configuration array - [vorbis_mode_configurations].
-
- 3.
read 1 bit as a framing flag. If unset, a framing error occurred and the stream is not - decodable.
-

After reading mode descriptions, setup header decode is complete. -

-

4.3. Audio packet decode and synthesis

- - - -

Following the three header packets, all packets in a Vorbis I stream are audio. The first step of -audio packet decode is to read and verify the packet type. A non-audio packet when audio is -expected indicates stream corruption or a non-compliant stream. The decoder must ignore the -packet and not attempt decoding it to audio. -

-

4.3.1. packet type, mode and window decode
-

-

- 1.
read 1 bit [packet_type]; check that packet type is 0 (audio) -
- 2.
read ilog([vorbis_mode_count]-1) bits [mode_number] -
- 3.
decode blocksize [n] is equal to [blocksize_0] if [vorbis_mode_blockflag] is 0, - else [n] is equal to [blocksize_1]. -
- 4.
perform window selection and setup; this window is used later by the inverse - MDCT: -
- a)
if this is a long window (the [vorbis_mode_blockflag] flag of this mode is - set): -
- i.
read 1 bit for [previous_window_flag] -
- ii.
read 1 bit for [next_window_flag] -
- iii.
if [previous_window_flag] is not set, the left half of the window will - be a hybrid window for lapping with a short block. See paragraph 1.3.2, - “Window shape decode (long windows only)” for an illustration of - overlapping dissimilar windows. Else, the left half window will have normal - long shape. -
- iv.
if [next_window_flag] is not set, the right half of the window will be - a hybrid window for lapping with a short block. See paragraph 1.3.2, - - - - “Window shape decode (long windows only)” for an illustration of - overlapping dissimilar windows. Else, the left right window will have normal - long shape.
-
- b)
if this is a short window, the window is always the same short-window - shape.
-
-

Vorbis windows all use the slope function y = sin(π
-2 * sin 2((x + 0.5)∕n * π)), where n is window -size and x ranges 0n- 1, but dissimilar lapping requirements can affect overall shape. Window -generation proceeds as follows: -

-

- 1.
[window_center] = [n] / 2 -
- 2.
if ([vorbis_mode_blockflag] is set and [previous_window_flag] is not set) - then -
- a)
[left_window_start] = [n]/4 - [blocksize_0]/4 -
- b)
[left_window_end] = [n]/4 + [blocksize_0]/4 -
- c)
[left_n] = [blocksize_0]/2
-

else -

- a)
[left_window_start] = 0 -
- b)
[left_window_end] = [window_center] -
- c)
[left_n] = [n]/2
-
- 3.
if ([vorbis_mode_blockflag] is set and [next_window_flag] is not set) then -
- a)
[right_window_start] = [n]*3/4 - [blocksize_0]/4 -
- b)
[right_window_end] = [n]*3/4 + [blocksize_0]/4 - - - -
- c)
[right_n] = [blocksize_0]/2
-

else -

- a)
[right_window_start] = [window_center] -
- b)
[right_window_end] = [n] -
- c)
[right_n] = [n]/2
-
- 4.
window from range 0 ... [left_window_start]-1 inclusive is zero -
- 5.
for [i] in range [left_window_start] ... [left_window_end]-1, window([i]) = - sin(π
-2 * sin 2( ([i]-[left_window_start]+0.5) / [left_n] *π
-2) ) -
- 6.
window from range [left_window_end] ... [right_window_start]-1 inclusive is - one -
- 7.
for [i] in range [right_window_start] ... [right_window_end]-1, window([i]) = - sin(π2 * sin 2( ([i]-[right_window_start]+0.5) / [right_n] *π2 + π2) ) -
- 8.
window from range [right_window_start] ... [n]-1 is zero
-

An end-of-packet condition up to this point should be considered an error that discards this -packet from the stream. An end of packet condition past this point is to be considered a possible -nominal occurrence. -

-

4.3.2. floor curve decode
-

From this point on, we assume out decode context is using mode number [mode_number] -from configuration array [vorbis_mode_configurations] and the map number -[vorbis_mode_mapping] (specified by the current mode) taken from the mapping configuration -array [vorbis_mapping_configurations]. -

Floor curves are decoded one-by-one in channel order. - - - -

For each floor [i] of [audio_channels] -

- 1.
[submap_number] = element [i] of vector [vorbis_mapping_mux] -
- 2.
[floor_number] = element [submap_number] of vector [vorbis_submap_floor] -
- 3.
if the floor type of this floor (vector - [vorbis_floor_types] element [floor_number]) is zero then decode the floor for - channel [i] according to the subsubsection 6.2.2, “packet decode” -
- 4.
if the type of this floor is one then decode the floor for channel [i] according to the - subsubsection 7.2.3, “packet decode” -
- 5.
save the needed decoded floor information for channel for later synthesis -
- 6.
if the decoded floor returned ’unused’, set vector [no_residue] element [i] to true, - else set vector [no_residue] element [i] to false
-

An end-of-packet condition during floor decode shall result in packet decode zeroing all channel -output vectors and skipping to the add/overlap output stage. -

-

4.3.3. nonzero vector propagate
-

A possible result of floor decode is that a specific vector is marked ’unused’ which indicates that -that final output vector is all-zero values (and the floor is zero). The residue for that vector is not -coded in the stream, save for one complication. If some vectors are used and some are not, -channel coupling could result in mixing a zeroed and nonzeroed vector to produce two nonzeroed -vectors. -

for each [i] from 0 ... [vorbis_mapping_coupling_steps]-1 -

-

- 1.
if either [no_residue] entry for channel ([vorbis_mapping_magnitude] element - [i]) or channel ([vorbis_mapping_angle] element [i]) are set to false, then both - must be set to false. Note that an ’unused’ floor has no decoded floor information; it - - - - is important that this is remembered at floor curve synthesis time.
-

-

4.3.4. residue decode
-

Unlike floors, which are decoded in channel order, the residue vectors are decoded in submap -order. -

for each submap [i] in order from 0 ... [vorbis_mapping_submaps]-1 -

-

- 1.
[ch] = 0 -
- 2.
for each channel [j] in order from 0 ... [audio_channels] - 1 -
- a)
if channel [j] in submap [i] (vector [vorbis_mapping_mux] element [j] is equal to - [i]) -
- i.
if vector [no_residue] element [j] is true -
- A.
vector [do_not_decode_flag] element [ch] is set
-

else -

- A.
vector [do_not_decode_flag] element [ch] is unset
-
- ii.
increment [ch]
-
-
- 3.
[residue_number] = vector [vorbis_mapping_submap_residue] element [i] -
- 4.
[residue_type] = vector [vorbis_residue_types] element [residue_number] -
- 5.
decode [ch] vectors using residue [residue_number], according to type [residue_type], - - - - also passing vector [do_not_decode_flag] to indicate which vectors in the bundle should - not be decoded. Correct per-vector decode length is [n]/2. -
- 6.
[ch] = 0 -
- 7.
for each channel [j] in order from 0 ... [audio_channels] -
- a)
if channel [j] is in submap [i] (vector [vorbis_mapping_mux] element [j] is equal - to [i]) -
- i.
residue vector for channel [j] is set to decoded residue vector [ch] -
- ii.
increment [ch]
-
-
-

-

4.3.5. inverse coupling
-

for each [i] from [vorbis_mapping_coupling_steps]-1 descending to 0 -

-

- 1.
[magnitude_vector] = the residue vector for channel (vector - [vorbis_mapping_magnitude] element [i]) -
- 2.
[angle_vector] = the residue vector for channel (vector [vorbis_mapping_angle] - element [i]) -
- 3.
for each scalar value [M] in vector [magnitude_vector] and the corresponding scalar value - [A] in vector [angle_vector]: -
- a)
if ([M] is greater than zero) - - - -
- i.
if ([A] is greater than zero) -
- A.
[new_M] = [M] -
- B.
[new_A] = [M]-[A]
-

else -

- A.
[new_A] = [M] -
- B.
[new_M] = [M]+[A]
-
-

else -

- i.
if ([A] is greater than zero) -
- A.
[new_M] = [M] -
- B.
[new_A] = [M]+[A]
-

else -

- A.
[new_A] = [M] -
- B.
[new_M] = [M]-[A]
-
-
- b)
set scalar value [M] in vector [magnitude_vector] to [new_M] -
- c)
set scalar value [A] in vector [angle_vector] to [new_A]
-
- - - -

-

4.3.6. dot product
-

For each channel, synthesize the floor curve from the decoded floor information, according to -packet type. Note that the vector synthesis length for floor computation is [n]/2. -

For each channel, multiply each element of the floor curve by each element of that -channel’s residue vector. The result is the dot product of the floor and residue vectors for -each channel; the produced vectors are the length [n]/2 audio spectrum for each -channel. -

One point is worth mentioning about this dot product; a common mistake in a fixed point -implementation might be to assume that a 32 bit fixed-point representation for floor and -residue and direct multiplication of the vectors is sufficient for acceptable spectral depth -in all cases because it happens to mostly work with the current Xiph.Org reference -encoder. -

However, floor vector values can span ~140dB (~24 bits unsigned), and the audio spectrum -vector should represent a minimum of 120dB (~21 bits with sign), even when output is to a 16 -bit PCM device. For the residue vector to represent full scale if the floor is nailed -to -140dB, it must be able to span 0 to +140dB. For the residue vector to reach -full scale if the floor is nailed at 0dB, it must be able to represent -140dB to +0dB. -Thus, in order to handle full range dynamics, a residue vector may span -140dB to -+140dB entirely within spec. A 280dB range is approximately 48 bits with sign; thus the -residue vector must be able to represent a 48 bit range and the dot product must -be able to handle an effective 48 bit times 24 bit multiplication. This range may be -achieved using large (64 bit or larger) integers, or implementing a movable binary point -representation. -

-

4.3.7. inverse MDCT
-

Convert the audio spectrum vector of each channel back into time domain PCM audio via an -inverse Modified Discrete Cosine Transform (MDCT). A detailed description of the MDCT is -available in [1]. The window function used for the MDCT is the function described -earlier. - - - -

-

4.3.8. overlap_add
-

Windowed MDCT output is overlapped and added with the right hand data of the previous -window such that the 3/4 point of the previous window is aligned with the 1/4 point of the -current window (as illustrated in paragraph 1.3.2, “Window shape decode (long windows -only)”). The overlapped portion produced from overlapping the previous and current frame data -is finished data to be returned by the decoder. This data spans from the center of -the previous window to the center of the current window. In the case of same-sized -windows, the amount of data to return is one-half block consisting of and only of the -overlapped portions. When overlapping a short and long window, much of the returned -range does not actually overlap. This does not damage transform orthogonality. Pay -attention however to returning the correct data range; the amount of data to be returned -is: -

-

1  window_blocksize(previous_window)/4+window_blocksize(current_window)/4
-

from the center (element windowsize/2) of the previous window to the center (element -windowsize/2-1, inclusive) of the current window. -

Data is not returned from the first frame; it must be used to ’prime’ the decode engine. The -encoder accounts for this priming when calculating PCM offsets; after the first frame, the proper -PCM output offset is ’0’ (as no data has been returned yet). -

-

4.3.9. output channel order
-

Vorbis I specifies only a channel mapping type 0. In mapping type 0, channel mapping is -implicitly defined as follows for standard audio applications. As of revision 16781 (20100113), the -specification adds defined channel locations for 6.1 and 7.1 surround. Ordering/location for -greater-than-eight channels remains ’left to the implementation’. -

These channel orderings refer to order within the encoded stream. It is naturally possible for a -decoder to produce output with channels in any order. Any such decoder should explicitly -document channel reordering behavior. -

-

-one channel
the stream is monophonic - - - -
-two channels
the stream is stereo. channel order: left, right -
-three channels
the stream is a 1d-surround encoding. channel order: left, center, right -
-four channels
the stream is quadraphonic surround. channel order: front left, front right, - rear left, rear right -
-five channels
the stream is five-channel surround. channel order: front left, center, front - right, rear left, rear right -
-six channels
the stream is 5.1 surround. channel order: front left, center, front right, rear - left, rear right, LFE -
-seven channels
the stream is 6.1 surround. channel order: front left, center, front right, - side left, side right, rear center, LFE -
-eight channels
the stream is 7.1 surround. channel order: front left, center, front right, - side left, side right, rear left, rear right, LFE -
-greater than eight channels
channel use and order is defined by the application -
-

Applications using Vorbis for dedicated purposes may define channel mapping as seen fit. Future -channel mappings (such as three and four channel Ambisonics) will make use of channel -mappings other than mapping 0. - - - - - - -

5. comment field and header specification

-

-

5.1. Overview

-

The Vorbis text comment header is the second (of three) header packets that begin a Vorbis -bitstream. It is meant for short text comments, not arbitrary metadata; arbitrary metadata -belongs in a separate logical bitstream (usually an XML stream type) that provides greater -structure and machine parseability. -

The comment field is meant to be used much like someone jotting a quick note on the bottom of -a CDR. It should be a little information to remember the disc by and explain it to others; a -short, to-the-point text note that need not only be a couple words, but isn’t going to be more -than a short paragraph. The essentials, in other words, whatever they turn out to be, -eg: -

-

-

Honest Bob and the Factory-to-Dealer-Incentives, “I’m Still Around”, opening - for Moxy Früvous, 1997.

-

-

5.2. Comment encoding

-

-

5.2.1. Structure
-

The comment header is logically a list of eight-bit-clean vectors; the number of vectors is -bounded to 232 - 1 and the length of each vector is limited to 232 - 1 bytes. The vector length is - - - -encoded; the vector contents themselves are not null terminated. In addition to the vector list, -there is a single vector for vendor name (also 8 bit clean, length encoded in 32 bits). For -example, the 1.0 release of libvorbis set the vendor string to “Xiph.Org libVorbis I -20020717”. -

The vector lengths and number of vectors are stored lsb first, according to the bit -packing conventions of the vorbis codec. However, since data in the comment header -is octet-aligned, they can simply be read as unaligned 32 bit little endian unsigned -integers. -

The comment header is decoded as follows: -

-

1    1) [vendor\_length] = read an unsigned integer of 32 bits
2    2) [vendor\_string] = read a UTF-8 vector as [vendor\_length] octets -
3    3) [user\_comment\_list\_length] = read an unsigned integer of 32 bits
4    4) iterate [user\_comment\_list\_length] times { -
5         5) [length] = read an unsigned integer of 32 bits
6         6) this iteration’s user comment = read a UTF-8 vector as [length] octets -
7       }
8    7) [framing\_bit] = read a single bit as boolean
9    8) if ( [framing\_bit] unset or end-of-packet ) then ERROR
10    9) done.
-

-

5.2.2. Content vector format
-

The comment vectors are structured similarly to a UNIX environment variable. That is, -comment fields consist of a field name and a corresponding value and look like: -

-

-

-

1  comment[0]="ARTIST=me";
2  comment[1]="TITLE=the sound of Vorbis";
-
-

The field name is case-insensitive and may consist of ASCII 0x20 through 0x7D, 0x3D (’=’) -excluded. ASCII 0x41 through 0x5A inclusive (characters A-Z) is to be considered equivalent to -ASCII 0x61 through 0x7A inclusive (characters a-z). -

The field name is immediately followed by ASCII 0x3D (’=’); this equals sign is used to -terminate the field name. -

0x3D is followed by 8 bit clean UTF-8 encoded value of the field contents to the end of the -field. - - - -

Field names -Below is a proposed, minimal list of standard field names with a description of intended use. No -single or group of field names is mandatory; a comment header may contain one, all or none of -the names in this list. -

-

-TITLE
Track/Work name -
-VERSION
The version field may be used to differentiate multiple versions of the same - track title in a single collection. (e.g. remix info) -
-ALBUM
The collection name to which this track belongs -
-TRACKNUMBER
The track number of this piece if part of a specific larger collection or - album -
-ARTIST
The artist generally considered responsible for the work. In popular music this is - usually the performing band or singer. For classical music it would be the composer. - For an audio book it would be the author of the original text. -
-PERFORMER
The artist(s) who performed the work. In classical music this would be the - conductor, orchestra, soloists. In an audio book it would be the actor who did the - reading. In popular music this is typically the same as the ARTIST and is omitted. -
-COPYRIGHT
Copyright attribution, e.g., ’2001 Nobody’s Band’ or ’1999 Jack Moffitt’ -
-LICENSE
License information, eg, ’All Rights Reserved’, ’Any Use Permitted’, a URL to - a license such as a Creative - Commons license (”www.creativecommons.org/blahblah/license.html”) or the EFF - Open Audio License (’distributed under the terms of the Open Audio License. see - http://www.eff.org/IP/Open_licenses/eff_oal.html for details’), etc. -
-ORGANIZATION
Name of the organization producing the track (i.e. the ’record label’) -
-DESCRIPTION
A short text description of the contents -
- - - -GENRE
A short text indication of music genre -
-DATE
Date the track was recorded -
-LOCATION
Location where track was recorded -
-CONTACT
Contact information for the creators or distributors of the track. This could - be a URL, an email address, the physical address of the producing label. -
-ISRC
International Standard Recording Code for the track; see the ISRC intro page for - more information on ISRC numbers. -
-

Implications -Field names should not be ’internationalized’; this is a concession to simplicity not -an attempt to exclude the majority of the world that doesn’t speak English. Field -contents, however, use the UTF-8 character encoding to allow easy representation of any -language. -

We have the length of the entirety of the field and restrictions on the field name so that -the field name is bounded in a known way. Thus we also have the length of the field -contents. -

Individual ’vendors’ may use non-standard field names within reason. The proper -use of comment fields should be clear through context at this point. Abuse will be -discouraged. -

There is no vendor-specific prefix to ’nonstandard’ field names. Vendors should make some effort -to avoid arbitrarily polluting the common namespace. We will generally collect the more useful -tags here to help with standardization. -

Field names are not required to be unique (occur once) within a comment header. As an -example, assume a track was recorded by three well know artists; the following is permissible, -and encouraged: -

-

-

- - - -

1  ARTIST=Dizzy Gillespie
2  ARTIST=Sonny Rollins
3  ARTIST=Sonny Stitt
-
-

-

5.2.3. Encoding
-

The comment header comprises the entirety of the second bitstream header packet. Unlike the -first bitstream header packet, it is not generally the only packet on the second page and may not -be restricted to within the second bitstream page. The length of the comment header packet is -(practically) unbounded. The comment header packet is not optional; it must be present in the -bitstream even if it is effectively empty. -

The comment header is encoded as follows (as per Ogg’s standard bitstream mapping which -renders least-significant-bit of the word to be coded into the least significant available bit of the -current bitstream octet first): -

-

- 1.
Vendor string length (32 bit unsigned quantity specifying number of octets) -
- 2.
Vendor string ([vendor string length] octets coded from beginning of string to end of - string, not null terminated) -
- 3.
Number of comment fields (32 bit unsigned quantity specifying number of fields) -
- 4.
Comment field 0 length (if [Number of comment fields] > 0; 32 bit unsigned quantity - specifying number of octets) -
- 5.
Comment field 0 ([Comment field 0 length] octets coded from beginning of string to - end of string, not null terminated) -
- 6.
Comment field 1 length (if [Number of comment fields] > 1...)... -
-

This is actually somewhat easier to describe in code; implementation of the above can be found -in vorbis/lib/info.c, _vorbis_pack_comment() and _vorbis_unpack_comment(). - - - - - - - - - -

6. Floor type 0 setup and decode

-

-

6.1. Overview

-

Vorbis floor type zero uses Line Spectral Pair (LSP, also alternately known as Line Spectral -Frequency or LSF) representation to encode a smooth spectral envelope curve as the frequency -response of the LSP filter. This representation is equivalent to a traditional all-pole infinite -impulse response filter as would be used in linear predictive coding; LSP representation may be -converted to LPC representation and vice-versa. -

-

6.2. Floor 0 format

-

Floor zero configuration consists of six integer fields and a list of VQ codebooks for use in -coding/decoding the LSP filter coefficient values used by each frame. -

-

6.2.1. header decode
-

Configuration information for instances of floor zero decodes from the codec setup header (third -packet). configuration decode proceeds as follows: -

-

1    1) [floor0_order] = read an unsigned integer of 8 bits
2    2) [floor0_rate] = read an unsigned integer of 16 bits -
3    3) [floor0_bark_map_size] = read an unsigned integer of 16 bits
4    4) [floor0_amplitude_bits] = read an unsigned integer of six bits -
5    5) [floor0_amplitude_offset] = read an unsigned integer of eight bits -
6    6) [floor0_number_of_books] = read an unsigned integer of four bits and add 1 -
7    7) array [floor0_book_list] = read a list of [floor0_number_of_books] unsigned integers of eight bits each;
- - - -

An end-of-packet condition during any of these bitstream reads renders this stream undecodable. -In addition, any element of the array [floor0_book_list] that is greater than the maximum -codebook number for this bitstream is an error condition that also renders the stream -undecodable. -

-

6.2.2. packet decode
-

Extracting a floor0 curve from an audio packet consists of first decoding the curve -amplitude and [floor0_order] LSP coefficient values from the bitstream, and then -computing the floor curve, which is defined as the frequency response of the decoded LSP -filter. -

Packet decode proceeds as follows: -

1    1) [amplitude] = read an unsigned integer of [floor0_amplitude_bits] bits
2    2) if ( [amplitude] is greater than zero ) { -
3         3) [coefficients] is an empty, zero length vector
4         4) [booknumber] = read an unsigned integer of ilog( [floor0_number_of_books] ) bits -
5         5) if ( [booknumber] is greater than the highest number decode codebook ) then packet is undecodable
6         6) [last] = zero; -
7         7) vector [temp_vector] = read vector from bitstream using codebook number [floor0_book_list] element [booknumber] in VQ context. -
8         8) add the scalar value [last] to each scalar in vector [temp_vector]
9         9) [last] = the value of the last scalar in vector [temp_vector] -
10        10) concatenate [temp_vector] onto the end of the [coefficients] vector -
11        11) if (length of vector [coefficients] is less than [floor0_order], continue at step 6
12  
13       }
14  
15   12) done.
16  
-

Take note of the following properties of decode: -

-

-

6.2.3. curve computation
-

Given an [amplitude] integer and [coefficients] vector from packet decode as well as -the [floor0_order], [floor0_rate], [floor0_bark_map_size], [floor0_amplitude_bits] and -[floor0_amplitude_offset] values from floor setup, and an output vector size [n] specified by the -decode process, we compute a floor output vector. -

If the value [amplitude] is zero, the return value is a length [n] vector with all-zero -scalars. Otherwise, begin by assuming the following definitions for the given vector to be -synthesized: -

-        {
-map  =    min (floor0_bark_map_size    - 1,f oobar)  for i ∈ [0, n - 1]
-    i     - 1                                        for i = n
-
-

-

where -

-          ⌊                                                 ⌋
-                ( floor0_rate--⋅ i) floor0_bark_map_size----
-f oobar =  bark         2n         ⋅ bark(.5 ⋅ floor0_rate )
-
-

-

and -

-                                                         2
-bark(x) = 13.1arctan (.00074x ) + 2.24 arctan(.0000000185x  ) + .0001x
-
-

-

The above is used to synthesize the LSP curve on a Bark-scale frequency axis, then map the -result to a linear-scale frequency axis. Similarly, the below calculation synthesizes the output -LSP curve [output] on a log (dB) amplitude scale, mapping it to linear amplitude in the last -step: -

-

- 1.
[i] = 0 -
- 2.
[ω] = π * map element [i] / [floor0_bark_map_size] -
- 3.
if ( [floor0_order] is odd ) -
- a)
calculate [p] and [q] according to:
-
-                    floor0∏_2order-3
-p  =   (1 - cos2ω)           4(cos([coefficients  ]2j+1) - cosω )2
-                      j=0
-         floor0_order-1
-       1     ∏2                                     2
-q  =   4-          4(cos([coefficients  ]2j) - cosω )
-            j=0
-
-
-
-

else [floor0_order] is even - - - -

- a)
calculate [p] and [q] according to:
-
-                    floor0_order-2
-       (1 - cosω ) ---∏2-----
-p  =   -----------           4(cos([coefficients   ]2j+1) - cosω)2
-            2         j=0
-                   floor0_order--2
-       (1-+-cosω-)    ∏2                                     2
-q  =        2                4(cos([coefficients  ]2j) - cos ω)
-                      j=0
-
-
-
-
- 4.
calculate [linear_floor_value] according to: -
-     (           (                                                                      ))
-                 amplitude---⋅ floor0_amplitute_offset---
-exp   .11512925       (2floor0_amplitude_bits - 1)√p--+-q    -  floor0_amplitude_offset
-
-

-

- 5.
[iteration_condition] = map element [i] -
- 6.
[output] element [i] = [linear_floor_value] -
- 7.
increment [i] -
- 8.
if ( map element [i] is equal to [iteration_condition] ) continue at step - - - - 5 -
- 9.
if ( [i] is less than [n] ) continue at step 2 -
- 10.
done
-

Errata 20150227: Bark scale computation -Due to a typo when typesetting this version of the specification from the original HTML -document, the Bark scale computation previously erroneously read: -

-                                                         2
-bark(x) = 13.1arctan (.00074x ) + 2.24 arctan(.0000000185x  +  .0001x )
-
-

-

Note that the last parenthesis is misplaced. This document now uses the correct equation as it -appeared in the original HTML spec document: -

-bark(x) = 13.1arctan (.00074x ) + 2.24 arctan(.0000000185x2 ) + .0001x
-
-

- - - - - - -

7. Floor type 1 setup and decode

-

-

7.1. Overview

-

Vorbis floor type one uses a piecewise straight-line representation to encode a spectral envelope -curve. The representation plots this curve mechanically on a linear frequency axis and a -logarithmic (dB) amplitude axis. The integer plotting algorithm used is similar to Bresenham’s -algorithm. -

-

7.2. Floor 1 format

-

-

7.2.1. model
-

Floor type one represents a spectral curve as a series of line segments. Synthesis constructs a -floor curve using iterative prediction in a process roughly equivalent to the following simplified -description: -

-

Consider the following example, with values chosen for ease of understanding rather than -representing typical configuration: -

For the below example, we assume a floor setup with an [n] of 128. The list of selected X values -in increasing order is 0,16,32,48,64,80,96,112 and 128. In list order, the values interleave as 0, -128, 64, 32, 96, 16, 48, 80 and 112. The corresponding list-order Y values as decoded from an -example packet are 110, 20, -5, -45, 0, -25, -10, 30 and -10. We compute the floor in the following -way, beginning with the first line: -

-

- -

PIC -

Figure 7: graph of example floor
-
-

We now draw new logical lines to reflect the correction to new˙Y, and iterate for X positions 32 -and 96: -

-

- -

PIC -

Figure 8: graph of example floor
-
-

Although the new Y value at X position 96 is unchanged, it is still used later as an endpoint for -further refinement. From here on, the pattern should be clear; we complete the floor computation -as follows: - - - -

-

- -

PIC -

Figure 9: graph of example floor
-
-
-

- -

PIC -

Figure 10: graph of example floor
-
-

A more efficient algorithm with carefully defined integer rounding behavior is used for actual -decode, as described later. The actual algorithm splits Y value computation and line plotting -into two steps with modifications to the above algorithm to eliminate noise accumulation -through integer roundoff/truncation. -

-

7.2.2. header decode
-

A list of floor X values is stored in the packet header in interleaved format (used in list order -during packet decode and synthesis). This list is split into partitions, and each partition is -assigned to a partition class. X positions 0 and [n] are implicit and do not belong to an explicit -partition or partition class. -

A partition class consists of a representation vector width (the number of Y values which -the partition class encodes at once), a ’subclass’ value representing the number of -alternate entropy books the partition class may use in representing Y values, the list of -[subclass] books and a master book used to encode which alternate books were chosen -for representation in a given packet. The master/subclass mechanism is meant to be -used as a flexible representation cascade while still using codebooks only in a scalar -context. - - - -

-

1  
2    1) [floor1_partitions] = read 5 bits as unsigned integer
3    2) [maximum_class] = -1
4    3) iterate [i] over the range 0 ... [floor1_partitions]-1 { -
5  
6          4) vector [floor1_partition_class_list] element [i] = read 4 bits as unsigned integer
7  
8       }
9   -
10    5) [maximum_class] = largest integer scalar value in vector [floor1_partition_class_list]
11    6) iterate [i] over the range 0 ... [maximum_class] { -
12  
13          7) vector [floor1_class_dimensions] element [i] = read 3 bits as unsigned integer and add 1 -
14   8) vector [floor1_class_subclasses] element [i] = read 2 bits as unsigned integer -
15          9) if ( vector [floor1_class_subclasses] element [i] is nonzero ) {
16   -
17               10) vector [floor1_class_masterbooks] element [i] = read 8 bits as unsigned integer
18  
19             }
20   -
21         11) iterate [j] over the range 0 ... (2 exponent [floor1_class_subclasses] element [i]) - 1 {
22   -
23               12) array [floor1_subclass_books] element [i],[j] =
24                   read 8 bits as unsigned integer and subtract one
25             } -
26        }
27  
28   13) [floor1_multiplier] = read 2 bits as unsigned integer and add one
29   14) [rangebits] = read 4 bits as unsigned integer -
30   15) vector [floor1_X_list] element [0] = 0
31   16) vector [floor1_X_list] element [1] = 2 exponent [rangebits]; -
32   17) [floor1_values] = 2
33   18) iterate [i] over the range 0 ... [floor1_partitions]-1 { -
34  
35         19) [current_class_number] = vector [floor1_partition_class_list] element [i] -
36         20) iterate [j] over the range 0 ... ([floor1_class_dimensions] element [current_class_number])-1 { -
37               21) vector [floor1_X_list] element ([floor1_values]) =
38                   read [rangebits] bits as unsigned integer -
39               22) increment [floor1_values] by one
40             }
41       }
42  
43   23) done
-

An end-of-packet condition while reading any aspect of a floor 1 configuration during -setup renders a stream undecodable. In addition, a [floor1_class_masterbooks] or -[floor1_subclass_books] scalar element greater than the highest numbered codebook -configured in this stream is an error condition that renders the stream undecodable. Vector -[floor1_x_list] is limited to a maximum length of 65 elements; a setup indicating more than 65 -total elements (including elements 0 and 1 set prior to the read loop) renders the stream -undecodable. All vector [floor1_x_list] element values must be unique within the vector; a -non-unique value renders the stream undecodable. -

-

7.2.3. packet decode
-

Packet decode begins by checking the [nonzero] flag: -

-

1    1) [nonzero] = read 1 bit as boolean
-

If [nonzero] is unset, that indicates this channel contained no audio energy in this frame. -Decode immediately returns a status indicating this floor curve (and thus this channel) is unused -this frame. (A return status of ’unused’ is different from decoding a floor that has all -points set to minimum representation amplitude, which happens to be approximately --140dB). -

Assuming [nonzero] is set, decode proceeds as follows: -

-

1    1) [range] = vector { 256, 128, 86, 64 } element ([floor1_multiplier]-1) - - - -
2    2) vector [floor1_Y] element [0] = read ilog([range]-1) bits as unsigned integer -
3    3) vector [floor1_Y] element [1] = read ilog([range]-1) bits as unsigned integer -
4    4) [offset] = 2;
5    5) iterate [i] over the range 0 ... [floor1_partitions]-1 {
6   -
7         6) [class] = vector [floor1_partition_class]  element [i]
8         7) [cdim]  = vector [floor1_class_dimensions] element [class] -
9         8) [cbits] = vector [floor1_class_subclasses] element [class]
10         9) [csub]  = (2 exponent [cbits])-1
11        10) [cval]  = 0 -
12        11) if ( [cbits] is greater than zero ) {
13  
14               12) [cval] = read from packet using codebook number -
15                   (vector [floor1_class_masterbooks] element [class]) in scalar context -
16            }
17  
18        13) iterate [j] over the range 0 ... [cdim]-1 {
19   -
20               14) [book] = array [floor1_subclass_books] element [class],([cval] bitwise AND [csub]) -
21               15) [cval] = [cval] right shifted [cbits] bits
22        16) if ( [book] is not less than zero ) {
23   -
24              17) vector [floor1_Y] element ([j]+[offset]) = read from packet using codebook
25                         [book] in scalar context -
26  
27                   } else [book] is less than zero {
28  
29              18) vector [floor1_Y] element ([j]+[offset]) = 0 -
30  
31                   }
32            }
33  
34        19) [offset] = [offset] + [cdim]
35  
36       }
37  
38   20) done
-

An end-of-packet condition during curve decode should be considered a nominal occurrence; if -end-of-packet is reached during any read operation above, floor decode is to return ’unused’ -status as if the [nonzero] flag had been unset at the beginning of decode. -

Vector [floor1_Y] contains the values from packet decode needed for floor 1 synthesis. -

-

7.2.4. curve computation
-

Curve computation is split into two logical steps; the first step derives final Y amplitude values -from the encoded, wrapped difference values taken from the bitstream. The second step -plots the curve lines. Also, although zero-difference values are used in the iterative -prediction to find final Y values, these points are conditionally skipped during final -line computation in step two. Skipping zero-difference values allows a smoother line -fit. -

Although some aspects of the below algorithm look like inconsequential optimizations, -implementors are warned to follow the details closely. Deviation from implementing a strictly -equivalent algorithm can result in serious decoding errors. -

Additional note: Although [floor1_final_Y] values in the prediction loop and at the end of -step 1 are inherently limited by the prediction algorithm to [0, [range]), it is possible to abuse -the setup and codebook machinery to produce negative or over-range results. We suggest that -decoder implementations guard the values in vector [floor1_final_Y] by clamping each -element to [0, [range]) after step 1. Variants of this suggestion are acceptable as valid floor1 -setups cannot produce out of range values. -

-

-step 1: amplitude value synthesis
-

Unwrap the always-positive-or-zero values read from the packet into +/- difference - - - - values, then apply to line prediction. -

-

1    1) [range] = vector { 256, 128, 86, 64 } element ([floor1_multiplier]-1)
2    2) vector [floor1_step2_flag] element [0] = set -
3    3) vector [floor1_step2_flag] element [1] = set
4    4) vector [floor1_final_Y] element [0] = vector [floor1_Y] element [0] -
5    5) vector [floor1_final_Y] element [1] = vector [floor1_Y] element [1]
6    6) iterate [i] over the range 2 ... [floor1_values]-1 {
7   -
8         7) [low_neighbor_offset] = low_neighbor([floor1_X_list],[i])
9         8) [high_neighbor_offset] = high_neighbor([floor1_X_list],[i]) -
10  
11         9) [predicted] = render_point( vector [floor1_X_list] element [low_neighbor_offset], -
12         vector [floor1_final_Y] element [low_neighbor_offset], -
13                                        vector [floor1_X_list] element [high_neighbor_offset], -
14         vector [floor1_final_Y] element [high_neighbor_offset], -
15                                        vector [floor1_X_list] element [i] )
16  
17        10) [val] = vector [floor1_Y] element [i] -
18        11) [highroom] = [range] - [predicted]
19        12) [lowroom]  = [predicted] -
20        13) if ( [highroom] is less than [lowroom] ) {
21  
22              14) [room] = [highroom] * 2
23   -
24            } else [highroom] is not less than [lowroom] {
25  
26              15) [room] = [lowroom] * 2
27  
28            }
29   -
30        16) if ( [val] is nonzero ) {
31  
32              17) vector [floor1_step2_flag] element [low_neighbor_offset] = set -
33              18) vector [floor1_step2_flag] element [high_neighbor_offset] = set -
34              19) vector [floor1_step2_flag] element [i] = set
35              20) if ( [val] is greater than or equal to [room] ) { -
36  
37                    21) if ( [highroom] is greater than [lowroom] ) {
38   -
39                          22) vector [floor1_final_Y] element [i] = [val] - [lowroom] + [predicted] -
40  
41         } else [highroom] is not greater than [lowroom] {
42   -
43                          23) vector [floor1_final_Y] element [i] = [predicted] - [val] + [highroom] - 1 -
44  
45                        }
46  
47                  } else [val] is less than [room] {
48   -
49                      24) if ([val] is odd) {
50  
51                          25) vector [floor1_final_Y] element [i] = -
52                              [predicted] - (([val] + 1) divided by  2 using integer division)
53   -
54                        } else [val] is even {
55  
56                          26) vector [floor1_final_Y] element [i] = -
57                              [predicted] + ([val] / 2 using integer division)
58  
59                        }
60   -
61                  }
62  
63            } else [val] is zero {
64  
65              27) vector [floor1_step2_flag] element [i] = unset -
66              28) vector [floor1_final_Y] element [i] = [predicted]
67  
68            }
69  
70       }
71  
72   29) done
73  
-
-step 2: curve synthesis
-

Curve synthesis generates a return vector [floor] of length [n] (where [n] is provided by - the decode process calling to floor decode). Floor 1 curve synthesis makes use of the - [floor1_X_list], [floor1_final_Y] and [floor1_step2_flag] vectors, as well as - [floor1_multiplier] and [floor1_values] values. -

Decode begins by sorting the scalars from vectors [floor1_X_list], [floor1_final_Y] and - [floor1_step2_flag] together into new vectors [floor1_X_list]’, [floor1_final_Y]’ - and [floor1_step2_flag]’ according to ascending sort order of the values in - [floor1_X_list]. That is, sort the values of [floor1_X_list] and then apply the same - permutation to elements of the other two vectors so that the X, Y and step2_flag values - still match. -

Then compute the final curve in one pass: -

-

1    1) [hx] = 0
2    2) [lx] = 0
3    3) [ly] = vector [floor1_final_Y]’ element [0] * [floor1_multiplier] -
4    4) iterate [i] over the range 1 ... [floor1_values]-1 {
5  
6         5) if ( [floor1_step2_flag]’ element [i] is set ) {
7   -
8               6) [hy] = [floor1_final_Y]’ element [i] * [floor1_multiplier]
9         7) [hx] = [floor1_X_list]’ element [i] -
10               8) render_line( [lx], [ly], [hx], [hy], [floor] )
11               9) [lx] = [hx]
12       10) [ly] = [hy] -
13            }
14       }
15  
16   11) if ( [hx] is less than [n] ) {
17  
18          12) render_line( [hx], [hy], [n], [hy], [floor] ) -
19  
20       }
21  
22   13) if ( [hx] is greater than [n] ) {
23  
24              14) truncate vector [floor] to [n] elements -
25  
26       }
27  
28   15) for each scalar in vector [floor], perform a lookup substitution using - - - -
29       the scalar value from [floor] as an offset into the vector [floor1_inverse_dB_static_table]
30  
31   16) done
32  
-
- - - -

8. Residue setup and decode

-

-

8.1. Overview

-

A residue vector represents the fine detail of the audio spectrum of one channel in an audio frame -after the encoder subtracts the floor curve and performs any channel coupling. A residue vector -may represent spectral lines, spectral magnitude, spectral phase or hybrids as mixed by channel -coupling. The exact semantic content of the vector does not matter to the residue -abstraction. -

Whatever the exact qualities, the Vorbis residue abstraction codes the residue vectors into the -bitstream packet, and then reconstructs the vectors during decode. Vorbis makes use of three -different encoding variants (numbered 0, 1 and 2) of the same basic vector encoding -abstraction. -

-

8.2. Residue format

-

Residue format partitions each vector in the vector bundle into chunks, classifies each -chunk, encodes the chunk classifications and finally encodes the chunks themselves -using the the specific VQ arrangement defined for each selected classification. The -exact interleaving and partitioning vary by residue encoding number, however the -high-level process used to classify and encode the residue vector is the same in all three -variants. -

A set of coded residue vectors are all of the same length. High level coding structure, ignoring for -the moment exactly how a partition is encoded and simply trusting that it is, is as -follows: -

-
-

- -

PIC -

Figure 11: illustration of residue vector format
-
-

-

8.3. residue 0

-

Residue 0 and 1 differ only in the way the values within a residue partition are interleaved during -partition encoding (visually treated as a black box–or cyan box or brown box–in the above -figure). -

Residue encoding 0 interleaves VQ encoding according to the dimension of the codebook used to - - - -encode a partition in a specific pass. The dimension of the codebook need not be the same in -multiple passes, however the partition size must be an even multiple of the codebook -dimension. -

As an example, assume a partition vector of size eight, to be encoded by residue 0 using -codebook sizes of 8, 4, 2 and 1: -

-

1  
2              original residue vector: [ 0 1 2 3 4 5 6 7 ]
3  
4  codebook dimensions = 8  encoded as: [ 0 1 2 3 4 5 6 7 ]
5   -
6  codebook dimensions = 4  encoded as: [ 0 2 4 6 ], [ 1 3 5 7 ]
7  
8  codebook dimensions = 2  encoded as: [ 0 4 ], [ 1 5 ], [ 2 6 ], [ 3 7 ] -
9  
10  codebook dimensions = 1  encoded as: [ 0 ], [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ]
11  
-

It is worth mentioning at this point that no configurable value in the residue coding setup is -restricted to a power of two. -

-

8.4. residue 1

-

Residue 1 does not interleave VQ encoding. It represents partition vector scalars in order. As -with residue 0, however, partition length must be an integer multiple of the codebook dimension, -although dimension may vary from pass to pass. -

As an example, assume a partition vector of size eight, to be encoded by residue 0 using -codebook sizes of 8, 4, 2 and 1: -

-

1  
2              original residue vector: [ 0 1 2 3 4 5 6 7 ]
3  
4  codebook dimensions = 8  encoded as: [ 0 1 2 3 4 5 6 7 ]
5   -
6  codebook dimensions = 4  encoded as: [ 0 1 2 3 ], [ 4 5 6 7 ]
7  
8  codebook dimensions = 2  encoded as: [ 0 1 ], [ 2 3 ], [ 4 5 ], [ 6 7 ] -
9  
10  codebook dimensions = 1  encoded as: [ 0 ], [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ]
11  
-

-

8.5. residue 2

-

Residue type two can be thought of as a variant of residue type 1. Rather than encoding multiple -passed-in vectors as in residue type 1, the ch passed in vectors of length n are first interleaved -and flattened into a single vector of length ch*n. Encoding then proceeds as in type 1. Decoding -is as in type 1 with decode interleave reversed. If operating on a single vector to begin with, -residue type 1 and type 2 are equivalent. - - - -

-

- -

PIC -

Figure 12: illustration of residue type 2
-
-

-

8.6. Residue decode

-

-

8.6.1. header decode
-

Header decode for all three residue types is identical. -

1    1) [residue\_begin] = read 24 bits as unsigned integer
2    2) [residue\_end] = read 24 bits as unsigned integer -
3    3) [residue\_partition\_size] = read 24 bits as unsigned integer and add one -
4    4) [residue\_classifications] = read 6 bits as unsigned integer and add one
5    5) [residue\_classbook] = read 8 bits as unsigned integer
-

[residue_begin] and [residue_end] select the specific sub-portion of each vector that is -actually coded; it implements akin to a bandpass where, for coding purposes, the vector -effectively begins at element [residue_begin] and ends at [residue_end]. Preceding and -following values in the unpacked vectors are zeroed. Note that for residue type 2, these -values as well as [residue_partition_size]apply to the interleaved vector, not the -individual vectors before interleave. [residue_partition_size] is as explained above, -[residue_classifications] is the number of possible classification to which a partition can -belong and [residue_classbook] is the codebook number used to code classification -codewords. The number of dimensions in book [residue_classbook] determines how -many classification values are grouped into a single classification codeword. Note that -the number of entries and dimensions in book [residue_classbook], along with -[residue_classifications], overdetermines to possible number of classification -codewords. If [residue_classifications]ˆ[residue_classbook].dimensions exceeds -[residue_classbook].entries, the bitstream should be regarded to be undecodable. - - - -

Next we read a bitmap pattern that specifies which partition classes code values in which -passes. -

-

1    1) iterate [i] over the range 0 ... [residue\_classifications]-1 {
2  
3         2) [high\_bits] = 0 -
4         3) [low\_bits] = read 3 bits as unsigned integer
5         4) [bitflag] = read one bit as boolean -
6         5) if ( [bitflag] is set ) then [high\_bits] = read five bits as unsigned integer -
7         6) vector [residue\_cascade] element [i] = [high\_bits] * 8 + [low\_bits]
8       }
9    7) done
-

Finally, we read in a list of book numbers, each corresponding to specific bit set in the cascade -bitmap. We loop over the possible codebook classifications and the maximum possible number of -encoding stages (8 in Vorbis I, as constrained by the elements of the cascade bitmap being eight -bits): -

-

1    1) iterate [i] over the range 0 ... [residue\_classifications]-1 {
2  
3         2) iterate [j] over the range 0 ... 7 { -
4  
5              3) if ( vector [residue\_cascade] element [i] bit [j] is set ) {
6   -
7                   4) array [residue\_books] element [i][j] = read 8 bits as unsigned integer
8  
9                 } else {
10   -
11                   5) array [residue\_books] element [i][j] = unused
12  
13                 }
14            }
15        }
16  
17    6) done
-

An end-of-packet condition at any point in header decode renders the stream undecodable. -In addition, any codebook number greater than the maximum numbered codebook -set up in this stream also renders the stream undecodable. All codebooks in array -[residue_books] are required to have a value mapping. The presence of codebook in array -[residue_books] without a value mapping (maptype equals zero) renders the stream -undecodable. -

-

8.6.2. packet decode
-

Format 0 and 1 packet decode is identical except for specific partition interleave. Format 2 packet -decode can be built out of the format 1 decode process. Thus we describe first the decode -infrastructure identical to all three formats. -

In addition to configuration information, the residue decode process is passed the number of -vectors in the submap bundle and a vector of flags indicating if any of the vectors are not to be -decoded. If the passed in number of vectors is 3 and vector number 1 is marked ’do not decode’, -decode skips vector 1 during the decode loop. However, even ’do not decode’ vectors are -allocated and zeroed. -

Depending on the values of [residue_begin] and [residue_end], it is obvious that the -encoded portion of a residue vector may be the entire possible residue vector or some other strict -subset of the actual residue vector size with zero padding at either uncoded end. However, it is - - - -also possible to set [residue_begin] and [residue_end] to specify a range partially or wholly -beyond the maximum vector size. Before beginning residue decode, limit [residue_begin] -and [residue_end] to the maximum possible vector size as follows. We assume that -the number of vectors being encoded, [ch] is provided by the higher level decoding -process. -

-

1    1) [actual\_size] = current blocksize/2;
2    2) if residue encoding is format 2 -
3         3) [actual\_size] = [actual\_size] * [ch];
4    4) [limit\_residue\_begin] = minimum of ([residue\_begin],[actual\_size]); -
5    5) [limit\_residue\_end] = minimum of ([residue\_end],[actual\_size]);
-

The following convenience values are conceptually useful to clarifying the decode process: -

-

1    1) [classwords\_per\_codeword] = [codebook\_dimensions] value of codebook [residue\_classbook] -
2    2) [n\_to\_read] = [limit\_residue\_end] - [limit\_residue\_begin]
3    3) [partitions\_to\_read] = [n\_to\_read] / [residue\_partition\_size]
-

Packet decode proceeds as follows, matching the description offered earlier in the document. -

1    1) allocate and zero all vectors that will be returned.
2    2) if ([n\_to\_read] is zero), stop; there is no residue to decode. -
3    3) iterate [pass] over the range 0 ... 7 {
4  
5         4) [partition\_count] = 0
6   -
7         5) while [partition\_count] is less than [partitions\_to\_read]
8  
9              6) if ([pass] is zero) {
10   -
11                   7) iterate [j] over the range 0 .. [ch]-1 {
12  
13                        8) if vector [j] is not marked ’do not decode’ { -
14  
15                             9) [temp] = read from packet using codebook [residue\_classbook] in scalar context -
16                            10) iterate [i] descending over the range [classwords\_per\_codeword]-1 ... 0 { -
17  
18                                 11) array [classifications] element [j],([i]+[partition\_count]) = -
19                                     [temp] integer modulo [residue\_classifications] -
20                                 12) [temp] = [temp] / [residue\_classifications] using integer division
21   -
22                                }
23  
24                           }
25  
26                      }
27  
28                 }
29   -
30             13) iterate [i] over the range 0 .. ([classwords\_per\_codeword] - 1) while [partition\_count] -
31                 is also less than [partitions\_to\_read] {
32  
33                   14) iterate [j] over the range 0 .. [ch]-1 { -
34  
35                        15) if vector [j] is not marked ’do not decode’ {
36   -
37                             16) [vqclass] = array [classifications] element [j],[partition\_count] -
38                             17) [vqbook] = array [residue\_books] element [vqclass],[pass]
39                             18) if ([vqbook] is not ’unused’) { -
40  
41                                  19) decode partition into output vector number [j], starting at scalar -
42                                      offset [limit\_residue\_begin]+[partition\_count]*[residue\_partition\_size] using -
43                                      codebook number [vqbook] in VQ context
44                            }
45                       } -
46  
47                   20) increment [partition\_count] by one
48  
49                 }
50            }
51       }
52  
53   21) done
54  
-

An end-of-packet condition during packet decode is to be considered a nominal occurrence. -Decode returns the result of vector decode up to that point. -

-

8.6.3. format 0 specifics
-

Format zero decodes partitions exactly as described earlier in the ’Residue Format: residue 0’ -section. The following pseudocode presents the same algorithm. Assume: - - - -

-

-

1   1) [step] = [n] / [codebook\_dimensions]
2   2) iterate [i] over the range 0 ... [step]-1 {
3   -
4        3) vector [entry\_temp] = read vector from packet using current codebook in VQ context -
5        4) iterate [j] over the range 0 ... [codebook\_dimensions]-1 {
6  
7             5) vector [v] element ([offset]+[i]+[j]*[step]) = -
8           vector [v] element ([offset]+[i]+[j]*[step]) +
9                  vector [entry\_temp] element [j]
10  
11           }
12  
13      }
14  
15    6) done
16  
-

-

8.6.4. format 1 specifics
-

Format 1 decodes partitions exactly as described earlier in the ’Residue Format: residue 1’ -section. The following pseudocode presents the same algorithm. Assume: -

-

-

1   1) [i] = 0
2   2) vector [entry\_temp] = read vector from packet using current codebook in VQ context -
3   3) iterate [j] over the range 0 ... [codebook\_dimensions]-1 {
4  
5        4) vector [v] element ([offset]+[i]) = -
6     vector [v] element ([offset]+[i]) +
7            vector [entry\_temp] element [j]
8        5) increment [i]
9   -
10      }
11  
12    6) if ( [i] is less than [n] ) continue at step 2
13    7) done
-

-

8.6.5. format 2 specifics
- - - -

Format 2 is reducible to format 1. It may be implemented as an additional step prior to and an -additional post-decode step after a normal format 1 decode. -

Format 2 handles ’do not decode’ vectors differently than residue 0 or 1; if all vectors are marked -’do not decode’, no decode occurrs. However, if at least one vector is to be decoded, all -the vectors are decoded. We then request normal format 1 to decode a single vector -representing all output channels, rather than a vector for each channel. After decode, -deinterleave the vector into independent vectors, one for each output channel. That -is: -

-

- 1.
If all vectors 0 through ch-1 are marked ’do not decode’, allocate and clear a single - vector [v]of length ch*n and skip step 2 below; proceed directly to the post-decode - step. -
- 2.
Rather than performing format 1 decode to produce ch vectors of length n each, call - format 1 decode to produce a single vector [v] of length ch*n. -
- 3.
Post decode: Deinterleave the single vector [v] returned by format 1 decode as - described above into ch independent vectors, one for each outputchannel, according - to: -
1    1) iterate [i] over the range 0 ... [n]-1 {
2  
3         2) iterate [j] over the range 0 ... [ch]-1 {
4   -
5              3) output vector number [j] element [i] = vector [v] element ([i] * [ch] + [j])
6  
7            }
8       }
9  
10    4) done
-
- - - - - - -

9. Helper equations

-

-

9.1. Overview

-

The equations below are used in multiple places by the Vorbis codec specification. Rather than -cluttering up the main specification documents, they are defined here and referenced where -appropriate. -

-

9.2. Functions

-

-

9.2.1. ilog
-

The ”ilog(x)” function returns the position number (1 through n) of the highest set bit in the -two’s complement integer value [x]. Values of [x] less than zero are defined to return -zero. -

-

1    1) [return\_value] = 0;
2    2) if ( [x] is greater than zero ) {
3  
4         3) increment [return\_value]; -
5         4) logical shift [x] one bit to the right, padding the MSb with zero
6         5) repeat at step 2)
7  
8       }
9  
10     6) done
-

Examples: -

-

-

9.2.2. float32_unpack
-

”float32_unpack(x)” is intended to translate the packed binary representation of a Vorbis -codebook float value into the representation used by the decoder for floating point numbers. For -purposes of this example, we will unpack a Vorbis float32 into a host-native floating point -number. -

-

1    1) [mantissa] = [x] bitwise AND 0x1fffff (unsigned result)
2    2) [sign] = [x] bitwise AND 0x80000000 (unsigned result) -
3    3) [exponent] = ( [x] bitwise AND 0x7fe00000) shifted right 21 bits (unsigned result) -
4    4) if ( [sign] is nonzero ) then negate [mantissa]
5    5) return [mantissa] * ( 2 ^ ( [exponent] - 788 ) )
-

-

9.2.3. lookup1_values
-

”lookup1_values(codebook_entries,codebook_dimensions)” is used to compute the -correct length of the value index for a codebook VQ lookup table of lookup type 1. -The values on this list are permuted to construct the VQ vector lookup table of size -[codebook_entries]. -

The return value for this function is defined to be ’the greatest integer value for which -[return_value] to the power of [codebook_dimensions] is less than or equal to -[codebook_entries]’. - - - -

-

9.2.4. low_neighbor
-

”low_neighbor(v,x)” finds the position n in vector [v] of the greatest value scalar element for -which n is less than [x] and vector [v] element n is less than vector [v] element -[x]. -

-

9.2.5. high_neighbor
-

”high_neighbor(v,x)” finds the position n in vector [v] of the lowest value scalar element for -which n is less than [x] and vector [v] element n is greater than vector [v] element -[x]. -

-

9.2.6. render_point
-

”render_point(x0,y0,x1,y1,X)” is used to find the Y value at point X along the line specified by -x0, x1, y0 and y1. This function uses an integer algorithm to solve for the point directly without -calculating intervening values along the line. -

-

1    1)  [dy] = [y1] - [y0]
2    2) [adx] = [x1] - [x0]
3    3) [ady] = absolute value of [dy]
4    4) [err] = [ady] * ([X] - [x0]) -
5    5) [off] = [err] / [adx] using integer division
6    6) if ( [dy] is less than zero ) {
7  
8         7) [Y] = [y0] - [off] -
9  
10       } else {
11  
12         8) [Y] = [y0] + [off]
13  
14       }
15  
16    9) done
-

-

9.2.7. render_line
- - - -

Floor decode type one uses the integer line drawing algorithm of ”render_line(x0, y0, x1, y1, v)” -to construct an integer floor curve for contiguous piecewise line segments. Note that it has not -been relevant elsewhere, but here we must define integer division as rounding division of both -positive and negative numbers toward zero. -

-

1    1)   [dy] = [y1] - [y0]
2    2)  [adx] = [x1] - [x0]
3    3)  [ady] = absolute value of [dy]
4    4) [base] = [dy] / [adx] using integer division -
5    5)    [x] = [x0]
6    6)    [y] = [y0]
7    7)  [err] = 0
8  
9    8) if ( [dy] is less than 0 ) {
10  
11          9) [sy] = [base] - 1 -
12  
13       } else {
14  
15         10) [sy] = [base] + 1
16  
17       }
18  
19   11) [ady] = [ady] - (absolute value of [base]) * [adx] -
20   12) vector [v] element [x] = [y]
21  
22   13) iterate [x] over the range [x0]+1 ... [x1]-1 {
23  
24         14) [err] = [err] + [ady]; -
25         15) if ( [err] >= [adx] ) {
26  
27               16) [err] = [err] - [adx]
28               17)   [y] = [y] + [sy]
29   -
30             } else {
31  
32               18) [y] = [y] + [base]
33  
34             }
35  
36         19) vector [v] element [x] = [y]
37  
38       }
- - - - - - -

10. Tables

-

-

10.1. floor1_inverse_dB_table

-

The vector [floor1_inverse_dB_table] is a 256 element static lookup table consisting of the -following values (read left to right then top to bottom): -

-

1    1.0649863e-07, 1.1341951e-07, 1.2079015e-07, 1.2863978e-07,
2    1.3699951e-07, 1.4590251e-07, 1.5538408e-07, 1.6548181e-07, -
3    1.7623575e-07, 1.8768855e-07, 1.9988561e-07, 2.1287530e-07,
4    2.2670913e-07, 2.4144197e-07, 2.5713223e-07, 2.7384213e-07, -
5    2.9163793e-07, 3.1059021e-07, 3.3077411e-07, 3.5226968e-07,
6    3.7516214e-07, 3.9954229e-07, 4.2550680e-07, 4.5315863e-07, -
7    4.8260743e-07, 5.1396998e-07, 5.4737065e-07, 5.8294187e-07,
8    6.2082472e-07, 6.6116941e-07, 7.0413592e-07, 7.4989464e-07, -
9    7.9862701e-07, 8.5052630e-07, 9.0579828e-07, 9.6466216e-07,
10    1.0273513e-06, 1.0941144e-06, 1.1652161e-06, 1.2409384e-06, -
11    1.3215816e-06, 1.4074654e-06, 1.4989305e-06, 1.5963394e-06,
12    1.7000785e-06, 1.8105592e-06, 1.9282195e-06, 2.0535261e-06, -
13    2.1869758e-06, 2.3290978e-06, 2.4804557e-06, 2.6416497e-06,
14    2.8133190e-06, 2.9961443e-06, 3.1908506e-06, 3.3982101e-06, -
15    3.6190449e-06, 3.8542308e-06, 4.1047004e-06, 4.3714470e-06,
16    4.6555282e-06, 4.9580707e-06, 5.2802740e-06, 5.6234160e-06, -
17    5.9888572e-06, 6.3780469e-06, 6.7925283e-06, 7.2339451e-06,
18    7.7040476e-06, 8.2047000e-06, 8.7378876e-06, 9.3057248e-06, -
19    9.9104632e-06, 1.0554501e-05, 1.1240392e-05, 1.1970856e-05,
20    1.2748789e-05, 1.3577278e-05, 1.4459606e-05, 1.5399272e-05, -
21    1.6400004e-05, 1.7465768e-05, 1.8600792e-05, 1.9809576e-05,
22    2.1096914e-05, 2.2467911e-05, 2.3928002e-05, 2.5482978e-05, -
23    2.7139006e-05, 2.8902651e-05, 3.0780908e-05, 3.2781225e-05,
24    3.4911534e-05, 3.7180282e-05, 3.9596466e-05, 4.2169667e-05, -
25    4.4910090e-05, 4.7828601e-05, 5.0936773e-05, 5.4246931e-05,
26    5.7772202e-05, 6.1526565e-05, 6.5524908e-05, 6.9783085e-05, -
27    7.4317983e-05, 7.9147585e-05, 8.4291040e-05, 8.9768747e-05,
28    9.5602426e-05, 0.00010181521, 0.00010843174, 0.00011547824, -
29    0.00012298267, 0.00013097477, 0.00013948625, 0.00014855085,
30    0.00015820453, 0.00016848555, 0.00017943469, 0.00019109536, -
31    0.00020351382, 0.00021673929, 0.00023082423, 0.00024582449,
32    0.00026179955, 0.00027881276, 0.00029693158, 0.00031622787, -
33    0.00033677814, 0.00035866388, 0.00038197188, 0.00040679456,
34    0.00043323036, 0.00046138411, 0.00049136745, 0.00052329927, -
35    0.00055730621, 0.00059352311, 0.00063209358, 0.00067317058,
36    0.00071691700, 0.00076350630, 0.00081312324, 0.00086596457, -
37    0.00092223983, 0.00098217216, 0.0010459992,  0.0011139742,
38    0.0011863665,  0.0012634633,  0.0013455702,  0.0014330129, -
39    0.0015261382,  0.0016253153,  0.0017309374,  0.0018434235,
40    0.0019632195,  0.0020908006,  0.0022266726,  0.0023713743, -
41    0.0025254795,  0.0026895994,  0.0028643847,  0.0030505286,
42    0.0032487691,  0.0034598925,  0.0036847358,  0.0039241906, -
43    0.0041792066,  0.0044507950,  0.0047400328,  0.0050480668,
44    0.0053761186,  0.0057254891,  0.0060975636,  0.0064938176, -
45    0.0069158225,  0.0073652516,  0.0078438871,  0.0083536271,
46    0.0088964928,  0.009474637,   0.010090352,   0.010746080, -
47    0.011444421,   0.012188144,   0.012980198,   0.013823725,
48    0.014722068,   0.015678791,   0.016697687,   0.017782797, -
49    0.018938423,   0.020169149,   0.021479854,   0.022875735,
50    0.024362330,   0.025945531,   0.027631618,   0.029427276, -
51    0.031339626,   0.033376252,   0.035545228,   0.037855157,
52    0.040315199,   0.042935108,   0.045725273,   0.048696758, -
53    0.051861348,   0.055231591,   0.058820850,   0.062643361,
54    0.066714279,   0.071049749,   0.075666962,   0.080584227, -
55    0.085821044,   0.091398179,   0.097337747,   0.10366330,
56    0.11039993,    0.11757434,    0.12521498,    0.13335215, -
57    0.14201813,    0.15124727,    0.16107617,    0.17154380,
58    0.18269168,    0.19456402,    0.20720788,    0.22067342, -
59    0.23501402,    0.25028656,    0.26655159,    0.28387361,
60    0.30232132,    0.32196786,    0.34289114,    0.36517414, -
61    0.38890521,    0.41417847,    0.44109412,    0.46975890,
62    0.50028648,    0.53279791,    0.56742212,    0.60429640, -
63    0.64356699,    0.68538959,    0.72993007,    0.77736504,
64    0.82788260,    0.88168307,    0.9389798,     1.
- - - - - - -

A. Embedding Vorbis into an Ogg stream

-

-

A.1. Overview

-

This document describes using Ogg logical and physical transport streams to encapsulate Vorbis -compressed audio packet data into file form. -

The section 1, “Introduction and Description” provides an overview of the construction of Vorbis -audio packets. -

The Ogg bitstream overview and Ogg logical bitstream and framing spec provide detailed -descriptions of Ogg transport streams. This specification document assumes a working -knowledge of the concepts covered in these named backround documents. Please read them -first. -

-

A.1.1. Restrictions
-

The Ogg/Vorbis I specification currently dictates that Ogg/Vorbis streams use Ogg transport -streams in degenerate, unmultiplexed form only. That is: -

- - - -

This is not to say that it is not currently possible to multiplex Vorbis with other media -types into a multi-stream Ogg file. At the time this document was written, Ogg was -becoming a popular container for low-bitrate movies consisting of DivX video and Vorbis -audio. However, a ’Vorbis I audio file’ is taken to imply Vorbis audio existing alone -within a degenerate Ogg stream. A compliant ’Vorbis audio player’ is not required to -implement Ogg support beyond the specific support of Vorbis within a degenrate Ogg -stream (naturally, application authors are encouraged to support full multiplexed Ogg -handling). -

-

A.1.2. MIME type
-

The MIME type of Ogg files depend on the context. Specifically, complex multimedia and -applications should use application/ogg, while visual media should use video/ogg, and audio -audio/ogg. Vorbis data encapsulated in Ogg may appear in any of those types. RTP -encapsulated Vorbis should use audio/vorbis + audio/vorbis-config. -

-

A.2. Encapsulation

-

Ogg encapsulation of a Vorbis packet stream is straightforward. -

- - - -

B. Vorbis encapsulation in RTP

-

Please consult RFC 5215 “RTP Payload Format for Vorbis Encoded Audio” for description of -how to embed Vorbis audio in an RTP stream. - - - - - - -

Colophon

-

PIC -

Ogg is a Xiph.Org Foundation effort to protect essential tenets of Internet multimedia from -corporate hostage-taking; Open Source is the net’s greatest tool to keep everyone honest. See -About the Xiph.Org Foundation for details. -

Ogg Vorbis is the first Ogg audio CODEC. Anyone may freely use and distribute the Ogg and -Vorbis specification, whether in a private, public or corporate capacity. However, the Xiph.Org -Foundation and the Ogg project (xiph.org) reserve the right to set the Ogg Vorbis specification -and certify specification compliance. -

Xiph.Org’s Vorbis software CODEC implementation is distributed under a BSD-like license. This -does not restrict third parties from distributing independent implementations of Vorbis software -under other licenses. -

Ogg, Vorbis, Xiph.Org Foundation and their logos are trademarks (tm) of the Xiph.Org -Foundation. These pages are copyright (C) 1994-2015 Xiph.Org Foundation. All rights -reserved. -

This document is set using LATEX. - - - -

References

-

-

-

- [1]   T. Sporer, K. Brandenburg and - B. Edler, The use of multirate filter banks for coding of high quality digital audio, - http://www.iocon.com/resource/docs/ps/eusipco_corrected.ps. -

-
- - - - - - -- cgit v1.1