From 104ad1eaba7ada2d5f9b18ced70d06721908f0be Mon Sep 17 00:00:00 2001 From: Aki Date: Fri, 1 Oct 2021 23:18:37 +0200 Subject: Removed unused OpcodeLib --- Opcode/OpcodeLib/Ice/IceMatrix3x3.h | 496 ------------------------------------ 1 file changed, 496 deletions(-) delete mode 100644 Opcode/OpcodeLib/Ice/IceMatrix3x3.h (limited to 'Opcode/OpcodeLib/Ice/IceMatrix3x3.h') diff --git a/Opcode/OpcodeLib/Ice/IceMatrix3x3.h b/Opcode/OpcodeLib/Ice/IceMatrix3x3.h deleted file mode 100644 index 07f5759..0000000 --- a/Opcode/OpcodeLib/Ice/IceMatrix3x3.h +++ /dev/null @@ -1,496 +0,0 @@ -/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// -/** - * Contains code for 3x3 matrices. - * \file IceMatrix3x3.h - * \author Pierre Terdiman - * \date April, 4, 2000 - */ -/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// - -/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// -// Include Guard -#ifndef __ICEMATRIX3X3_H__ -#define __ICEMATRIX3X3_H__ - - // Forward declarations - class Quat; - - #define MATRIX3X3_EPSILON (1.0e-7f) - - class ICEMATHS_API Matrix3x3 - { - public: - //! Empty constructor - inline_ Matrix3x3() {} - //! Constructor from 9 values - inline_ Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22) - { - m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; - m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; - m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; - } - //! Copy constructor - inline_ Matrix3x3(const Matrix3x3& mat) { CopyMemory(m, &mat.m, 9*sizeof(float)); } - //! Destructor - inline_ ~Matrix3x3() {} - - //! Assign values - inline_ void Set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22) - { - m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; - m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; - m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; - } - - //! Sets the scale from a IcePoint. The point is put on the diagonal. - inline_ void SetScale(const IcePoint& p) { m[0][0] = p.x; m[1][1] = p.y; m[2][2] = p.z; } - - //! Sets the scale from floats. Values are put on the diagonal. - inline_ void SetScale(float sx, float sy, float sz) { m[0][0] = sx; m[1][1] = sy; m[2][2] = sz; } - - //! Scales from a IcePoint. Each row is multiplied by a component. - inline_ void Scale(const IcePoint& p) - { - m[0][0] *= p.x; m[0][1] *= p.x; m[0][2] *= p.x; - m[1][0] *= p.y; m[1][1] *= p.y; m[1][2] *= p.y; - m[2][0] *= p.z; m[2][1] *= p.z; m[2][2] *= p.z; - } - - //! Scales from floats. Each row is multiplied by a value. - inline_ void Scale(float sx, float sy, float sz) - { - m[0][0] *= sx; m[0][1] *= sx; m[0][2] *= sx; - m[1][0] *= sy; m[1][1] *= sy; m[1][2] *= sy; - m[2][0] *= sz; m[2][1] *= sz; m[2][2] *= sz; - } - - //! Copy from a Matrix3x3 - inline_ void Copy(const Matrix3x3& source) { CopyMemory(m, source.m, 9*sizeof(float)); } - - // Row-column access - //! Returns a row. - inline_ void GetRow(const udword r, IcePoint& p) const { p.x = m[r][0]; p.y = m[r][1]; p.z = m[r][2]; } - //! Returns a row. - inline_ const IcePoint& GetRow(const udword r) const { return *(const IcePoint*)&m[r][0]; } - //! Returns a row. - inline_ IcePoint& GetRow(const udword r) { return *(IcePoint*)&m[r][0]; } - //! Sets a row. - inline_ void SetRow(const udword r, const IcePoint& p) { m[r][0] = p.x; m[r][1] = p.y; m[r][2] = p.z; } - //! Returns a column. - inline_ void GetCol(const udword c, IcePoint& p) const { p.x = m[0][c]; p.y = m[1][c]; p.z = m[2][c]; } - //! Sets a column. - inline_ void SetCol(const udword c, const IcePoint& p) { m[0][c] = p.x; m[1][c] = p.y; m[2][c] = p.z; } - - //! Computes the trace. The trace is the sum of the 3 diagonal components. - inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2]; } - //! Clears the matrix. - inline_ void Zero() { ZeroMemory(&m, sizeof(m)); } - //! Sets the identity matrix. - inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = 1.0f; } - //! Checks for identity - inline_ bool IsIdentity() const - { - if(IR(m[0][0])!=IEEE_1_0) return false; - if(IR(m[0][1])!=0) return false; - if(IR(m[0][2])!=0) return false; - - if(IR(m[1][0])!=0) return false; - if(IR(m[1][1])!=IEEE_1_0) return false; - if(IR(m[1][2])!=0) return false; - - if(IR(m[2][0])!=0) return false; - if(IR(m[2][1])!=0) return false; - if(IR(m[2][2])!=IEEE_1_0) return false; - - return true; - } - - //! Checks matrix validity - inline_ BOOL IsValid() const - { - for(udword j=0;j<3;j++) - { - for(udword i=0;i<3;i++) - { - if(!IsValidFloat(m[j][i])) return FALSE; - } - } - return TRUE; - } - - //! Makes a skew-symmetric matrix (a.k.a. Star(*) Matrix) - //! [ 0.0 -a.z a.y ] - //! [ a.z 0.0 -a.x ] - //! [ -a.y a.x 0.0 ] - //! This is also called a "cross matrix" since for any vectors A and B, - //! A^B = Skew(A) * B = - B * Skew(A); - inline_ void SkewSymmetric(const IcePoint& a) - { - m[0][0] = 0.0f; - m[0][1] = -a.z; - m[0][2] = a.y; - - m[1][0] = a.z; - m[1][1] = 0.0f; - m[1][2] = -a.x; - - m[2][0] = -a.y; - m[2][1] = a.x; - m[2][2] = 0.0f; - } - - //! Negates the matrix - inline_ void Neg() - { - m[0][0] = -m[0][0]; m[0][1] = -m[0][1]; m[0][2] = -m[0][2]; - m[1][0] = -m[1][0]; m[1][1] = -m[1][1]; m[1][2] = -m[1][2]; - m[2][0] = -m[2][0]; m[2][1] = -m[2][1]; m[2][2] = -m[2][2]; - } - - //! Neg from another matrix - inline_ void Neg(const Matrix3x3& mat) - { - m[0][0] = -mat.m[0][0]; m[0][1] = -mat.m[0][1]; m[0][2] = -mat.m[0][2]; - m[1][0] = -mat.m[1][0]; m[1][1] = -mat.m[1][1]; m[1][2] = -mat.m[1][2]; - m[2][0] = -mat.m[2][0]; m[2][1] = -mat.m[2][1]; m[2][2] = -mat.m[2][2]; - } - - //! Add another matrix - inline_ void Add(const Matrix3x3& mat) - { - m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2]; - m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2]; - m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2]; - } - - //! Sub another matrix - inline_ void Sub(const Matrix3x3& mat) - { - m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2]; - m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2]; - m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2]; - } - //! Mac - inline_ void Mac(const Matrix3x3& a, const Matrix3x3& b, float s) - { - m[0][0] = a.m[0][0] + b.m[0][0] * s; - m[0][1] = a.m[0][1] + b.m[0][1] * s; - m[0][2] = a.m[0][2] + b.m[0][2] * s; - - m[1][0] = a.m[1][0] + b.m[1][0] * s; - m[1][1] = a.m[1][1] + b.m[1][1] * s; - m[1][2] = a.m[1][2] + b.m[1][2] * s; - - m[2][0] = a.m[2][0] + b.m[2][0] * s; - m[2][1] = a.m[2][1] + b.m[2][1] * s; - m[2][2] = a.m[2][2] + b.m[2][2] * s; - } - //! Mac - inline_ void Mac(const Matrix3x3& a, float s) - { - m[0][0] += a.m[0][0] * s; m[0][1] += a.m[0][1] * s; m[0][2] += a.m[0][2] * s; - m[1][0] += a.m[1][0] * s; m[1][1] += a.m[1][1] * s; m[1][2] += a.m[1][2] * s; - m[2][0] += a.m[2][0] * s; m[2][1] += a.m[2][1] * s; m[2][2] += a.m[2][2] * s; - } - - //! this = A * s - inline_ void Mult(const Matrix3x3& a, float s) - { - m[0][0] = a.m[0][0] * s; m[0][1] = a.m[0][1] * s; m[0][2] = a.m[0][2] * s; - m[1][0] = a.m[1][0] * s; m[1][1] = a.m[1][1] * s; m[1][2] = a.m[1][2] * s; - m[2][0] = a.m[2][0] * s; m[2][1] = a.m[2][1] * s; m[2][2] = a.m[2][2] * s; - } - - inline_ void Add(const Matrix3x3& a, const Matrix3x3& b) - { - m[0][0] = a.m[0][0] + b.m[0][0]; m[0][1] = a.m[0][1] + b.m[0][1]; m[0][2] = a.m[0][2] + b.m[0][2]; - m[1][0] = a.m[1][0] + b.m[1][0]; m[1][1] = a.m[1][1] + b.m[1][1]; m[1][2] = a.m[1][2] + b.m[1][2]; - m[2][0] = a.m[2][0] + b.m[2][0]; m[2][1] = a.m[2][1] + b.m[2][1]; m[2][2] = a.m[2][2] + b.m[2][2]; - } - - inline_ void Sub(const Matrix3x3& a, const Matrix3x3& b) - { - m[0][0] = a.m[0][0] - b.m[0][0]; m[0][1] = a.m[0][1] - b.m[0][1]; m[0][2] = a.m[0][2] - b.m[0][2]; - m[1][0] = a.m[1][0] - b.m[1][0]; m[1][1] = a.m[1][1] - b.m[1][1]; m[1][2] = a.m[1][2] - b.m[1][2]; - m[2][0] = a.m[2][0] - b.m[2][0]; m[2][1] = a.m[2][1] - b.m[2][1]; m[2][2] = a.m[2][2] - b.m[2][2]; - } - - //! this = a * b - inline_ void Mult(const Matrix3x3& a, const Matrix3x3& b) - { - m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[1][0] + a.m[0][2] * b.m[2][0]; - m[0][1] = a.m[0][0] * b.m[0][1] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[2][1]; - m[0][2] = a.m[0][0] * b.m[0][2] + a.m[0][1] * b.m[1][2] + a.m[0][2] * b.m[2][2]; - m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[1][2] * b.m[2][0]; - m[1][1] = a.m[1][0] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[2][1]; - m[1][2] = a.m[1][0] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[1][2] * b.m[2][2]; - m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[1][0] + a.m[2][2] * b.m[2][0]; - m[2][1] = a.m[2][0] * b.m[0][1] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[2][1]; - m[2][2] = a.m[2][0] * b.m[0][2] + a.m[2][1] * b.m[1][2] + a.m[2][2] * b.m[2][2]; - } - - //! this = transpose(a) * b - inline_ void MultAtB(const Matrix3x3& a, const Matrix3x3& b) - { - m[0][0] = a.m[0][0] * b.m[0][0] + a.m[1][0] * b.m[1][0] + a.m[2][0] * b.m[2][0]; - m[0][1] = a.m[0][0] * b.m[0][1] + a.m[1][0] * b.m[1][1] + a.m[2][0] * b.m[2][1]; - m[0][2] = a.m[0][0] * b.m[0][2] + a.m[1][0] * b.m[1][2] + a.m[2][0] * b.m[2][2]; - m[1][0] = a.m[0][1] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[2][1] * b.m[2][0]; - m[1][1] = a.m[0][1] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[2][1] * b.m[2][1]; - m[1][2] = a.m[0][1] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[2][1] * b.m[2][2]; - m[2][0] = a.m[0][2] * b.m[0][0] + a.m[1][2] * b.m[1][0] + a.m[2][2] * b.m[2][0]; - m[2][1] = a.m[0][2] * b.m[0][1] + a.m[1][2] * b.m[1][1] + a.m[2][2] * b.m[2][1]; - m[2][2] = a.m[0][2] * b.m[0][2] + a.m[1][2] * b.m[1][2] + a.m[2][2] * b.m[2][2]; - } - - //! this = a * transpose(b) - inline_ void MultABt(const Matrix3x3& a, const Matrix3x3& b) - { - m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[0][1] + a.m[0][2] * b.m[0][2]; - m[0][1] = a.m[0][0] * b.m[1][0] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[1][2]; - m[0][2] = a.m[0][0] * b.m[2][0] + a.m[0][1] * b.m[2][1] + a.m[0][2] * b.m[2][2]; - m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[0][1] + a.m[1][2] * b.m[0][2]; - m[1][1] = a.m[1][0] * b.m[1][0] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[1][2]; - m[1][2] = a.m[1][0] * b.m[2][0] + a.m[1][1] * b.m[2][1] + a.m[1][2] * b.m[2][2]; - m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[0][1] + a.m[2][2] * b.m[0][2]; - m[2][1] = a.m[2][0] * b.m[1][0] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[1][2]; - m[2][2] = a.m[2][0] * b.m[2][0] + a.m[2][1] * b.m[2][1] + a.m[2][2] * b.m[2][2]; - } - - //! Makes a rotation matrix mapping vector "from" to vector "to". - Matrix3x3& FromTo(const IcePoint& from, const IcePoint& to); - - //! Set a rotation matrix around the X axis. - //! 1 0 0 - //! RX = 0 cx sx - //! 0 -sx cx - void RotX(float angle); - //! Set a rotation matrix around the Y axis. - //! cy 0 -sy - //! RY = 0 1 0 - //! sy 0 cy - void RotY(float angle); - //! Set a rotation matrix around the Z axis. - //! cz sz 0 - //! RZ = -sz cz 0 - //! 0 0 1 - void RotZ(float angle); - //! cy sx.sy -sy.cx - //! RY.RX 0 cx sx - //! sy -sx.cy cx.cy - void RotYX(float y, float x); - - //! Make a rotation matrix about an arbitrary axis - Matrix3x3& Rot(float angle, const IcePoint& axis); - - //! Transpose the matrix. - void Transpose() - { - IR(m[1][0]) ^= IR(m[0][1]); IR(m[0][1]) ^= IR(m[1][0]); IR(m[1][0]) ^= IR(m[0][1]); - IR(m[2][0]) ^= IR(m[0][2]); IR(m[0][2]) ^= IR(m[2][0]); IR(m[2][0]) ^= IR(m[0][2]); - IR(m[2][1]) ^= IR(m[1][2]); IR(m[1][2]) ^= IR(m[2][1]); IR(m[2][1]) ^= IR(m[1][2]); - } - - //! this = Transpose(a) - void Transpose(const Matrix3x3& a) - { - m[0][0] = a.m[0][0]; m[0][1] = a.m[1][0]; m[0][2] = a.m[2][0]; - m[1][0] = a.m[0][1]; m[1][1] = a.m[1][1]; m[1][2] = a.m[2][1]; - m[2][0] = a.m[0][2]; m[2][1] = a.m[1][2]; m[2][2] = a.m[2][2]; - } - - //! Compute the determinant of the matrix. We use the rule of Sarrus. - float Determinant() const - { - return (m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1]) - - (m[2][0]*m[1][1]*m[0][2] + m[2][1]*m[1][2]*m[0][0] + m[2][2]*m[1][0]*m[0][1]); - } -/* - //! Compute a cofactor. Used for matrix inversion. - float CoFactor(ubyte row, ubyte column) const - { - static sdword gIndex[3+2] = { 0, 1, 2, 0, 1 }; - return (m[gIndex[row+1]][gIndex[column+1]]*m[gIndex[row+2]][gIndex[column+2]] - m[gIndex[row+2]][gIndex[column+1]]*m[gIndex[row+1]][gIndex[column+2]]); - } -*/ - //! Invert the matrix. Determinant must be different from zero, else matrix can't be inverted. - Matrix3x3& Invert() - { - float Det = Determinant(); // Must be !=0 - float OneOverDet = 1.0f / Det; - - Matrix3x3 Temp; - Temp.m[0][0] = +(m[1][1] * m[2][2] - m[2][1] * m[1][2]) * OneOverDet; - Temp.m[1][0] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]) * OneOverDet; - Temp.m[2][0] = +(m[1][0] * m[2][1] - m[2][0] * m[1][1]) * OneOverDet; - Temp.m[0][1] = -(m[0][1] * m[2][2] - m[2][1] * m[0][2]) * OneOverDet; - Temp.m[1][1] = +(m[0][0] * m[2][2] - m[2][0] * m[0][2]) * OneOverDet; - Temp.m[2][1] = -(m[0][0] * m[2][1] - m[2][0] * m[0][1]) * OneOverDet; - Temp.m[0][2] = +(m[0][1] * m[1][2] - m[1][1] * m[0][2]) * OneOverDet; - Temp.m[1][2] = -(m[0][0] * m[1][2] - m[1][0] * m[0][2]) * OneOverDet; - Temp.m[2][2] = +(m[0][0] * m[1][1] - m[1][0] * m[0][1]) * OneOverDet; - - *this = Temp; - - return *this; - } - - Matrix3x3& Normalize(); - - //! this = exp(a) - Matrix3x3& Exp(const Matrix3x3& a); - -void FromQuat(const Quat &q); -void FromQuatL2(const Quat &q, float l2); - - // Arithmetic operators - //! Operator for Matrix3x3 Plus = Matrix3x3 + Matrix3x3; - inline_ Matrix3x3 operator+(const Matrix3x3& mat) const - { - return Matrix3x3( - m[0][0] + mat.m[0][0], m[0][1] + mat.m[0][1], m[0][2] + mat.m[0][2], - m[1][0] + mat.m[1][0], m[1][1] + mat.m[1][1], m[1][2] + mat.m[1][2], - m[2][0] + mat.m[2][0], m[2][1] + mat.m[2][1], m[2][2] + mat.m[2][2]); - } - - //! Operator for Matrix3x3 Minus = Matrix3x3 - Matrix3x3; - inline_ Matrix3x3 operator-(const Matrix3x3& mat) const - { - return Matrix3x3( - m[0][0] - mat.m[0][0], m[0][1] - mat.m[0][1], m[0][2] - mat.m[0][2], - m[1][0] - mat.m[1][0], m[1][1] - mat.m[1][1], m[1][2] - mat.m[1][2], - m[2][0] - mat.m[2][0], m[2][1] - mat.m[2][1], m[2][2] - mat.m[2][2]); - } - - //! Operator for Matrix3x3 Mul = Matrix3x3 * Matrix3x3; - inline_ Matrix3x3 operator*(const Matrix3x3& mat) const - { - return Matrix3x3( - m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0], - m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1], - m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2], - - m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0], - m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1], - m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2], - - m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0], - m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1], - m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2]); - } - - //! Operator for IcePoint Mul = Matrix3x3 * IcePoint; - inline_ IcePoint operator*(const IcePoint& v) const { return IcePoint(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v); } - - //! Operator for Matrix3x3 Mul = Matrix3x3 * float; - inline_ Matrix3x3 operator*(float s) const - { - return Matrix3x3( - m[0][0]*s, m[0][1]*s, m[0][2]*s, - m[1][0]*s, m[1][1]*s, m[1][2]*s, - m[2][0]*s, m[2][1]*s, m[2][2]*s); - } - - //! Operator for Matrix3x3 Mul = float * Matrix3x3; - inline_ friend Matrix3x3 operator*(float s, const Matrix3x3& mat) - { - return Matrix3x3( - s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2], - s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2], - s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2]); - } - - //! Operator for Matrix3x3 Div = Matrix3x3 / float; - inline_ Matrix3x3 operator/(float s) const - { - if (s) s = 1.0f / s; - return Matrix3x3( - m[0][0]*s, m[0][1]*s, m[0][2]*s, - m[1][0]*s, m[1][1]*s, m[1][2]*s, - m[2][0]*s, m[2][1]*s, m[2][2]*s); - } - - //! Operator for Matrix3x3 Div = float / Matrix3x3; - inline_ friend Matrix3x3 operator/(float s, const Matrix3x3& mat) - { - return Matrix3x3( - s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2], - s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2], - s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2]); - } - - //! Operator for Matrix3x3 += Matrix3x3 - inline_ Matrix3x3& operator+=(const Matrix3x3& mat) - { - m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2]; - m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2]; - m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2]; - return *this; - } - - //! Operator for Matrix3x3 -= Matrix3x3 - inline_ Matrix3x3& operator-=(const Matrix3x3& mat) - { - m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2]; - m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2]; - m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2]; - return *this; - } - - //! Operator for Matrix3x3 *= Matrix3x3 - inline_ Matrix3x3& operator*=(const Matrix3x3& mat) - { - IcePoint TempRow; - - GetRow(0, TempRow); - m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; - m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; - m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; - - GetRow(1, TempRow); - m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; - m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; - m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; - - GetRow(2, TempRow); - m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; - m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; - m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; - return *this; - } - - //! Operator for Matrix3x3 *= float - inline_ Matrix3x3& operator*=(float s) - { - m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; - m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; - m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; - return *this; - } - - //! Operator for Matrix3x3 /= float - inline_ Matrix3x3& operator/=(float s) - { - if (s) s = 1.0f / s; - m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; - m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; - m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; - return *this; - } - - // Cast operators - //! Cast a Matrix3x3 to a Matrix4x4. - operator Matrix4x4() const; - //! Cast a Matrix3x3 to a Quat. - operator Quat() const; - - inline_ const IcePoint& operator[](int row) const { return *(const IcePoint*)&m[row][0]; } - inline_ IcePoint& operator[](int row) { return *(IcePoint*)&m[row][0]; } - - public: - - float m[3][3]; - }; - -#endif // __ICEMATRIX3X3_H__ - -- cgit v1.1